Loading…
Reinforcement Learning Assisted Impersonation Attack Detection in Device-to-Device Communications
In device-to-device (D2D) communications, the channel gain between a transmitter and a receiver is difficult to predict due to channel variations. Hence, an attacker can easily perform an impersonation attack between two authentic D2D users. As a countermeasure, we propose a reinforcement learning-b...
Saved in:
Published in: | IEEE transactions on vehicular technology 2021-02, Vol.70 (2), p.1474-1479 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In device-to-device (D2D) communications, the channel gain between a transmitter and a receiver is difficult to predict due to channel variations. Hence, an attacker can easily perform an impersonation attack between two authentic D2D users. As a countermeasure, we propose a reinforcement learning-based technique that guarantees identification of the impersonator based on channel gains. To show the merit of our technique, we report its performance in terms of false alarm rate, miss-detection rate, and average error rate. The secret key generation rate is also determined under the impersonation attack based on physical layer security. |
---|---|
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2021.3053015 |