Loading…
On the inclusion of channel's time dependence in a hidden Markov model for blind channel estimation
The theory of hidden Markov models (HMM) is applied to the problem of blind (without training sequences) channel estimation and data detection. Within a HMM framework, the Baum-Welch (1970) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding...
Saved in:
Published in: | IEEE transactions on vehicular technology 2001-05, Vol.50 (3), p.867-873 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The theory of hidden Markov models (HMM) is applied to the problem of blind (without training sequences) channel estimation and data detection. Within a HMM framework, the Baum-Welch (1970) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedure assumes the model (i.e., the channel response) to be static throughout the observation sequence. By means of introducing a parametric model for time-varying channel responses, a version of the algorithm, which is more appropriate for mobile channels [time-dependent Baum-Welch (TDBW)] is derived. Aiming to compare algorithm behavior, a set of computer simulations for a GSM scenario is provided. Results indicate that, in comparison to other Baum-Welch (BW) versions of the algorithm, the TDBW approach attains a remarkable enhancement in performance. For that purpose, only a moderate increase in computational complexity is needed. |
---|---|
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/25.933319 |