Loading…
Adaptive Recursive Decentralized Cooperative Localization for Multirobot Systems With Time-Varying Measurement Accuracy
Decentralized cooperative localization (DCL) is a promising method to determine accurate multirobot poses (i.e., positions and orientations) for robot teams operating in an environment without absolute navigation information. Existing DCL methods often use fixed measurement noise covariance matrices...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-25 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Decentralized cooperative localization (DCL) is a promising method to determine accurate multirobot poses (i.e., positions and orientations) for robot teams operating in an environment without absolute navigation information. Existing DCL methods often use fixed measurement noise covariance matrices for multirobot pose estimation; however, their performance degrades when the measurement noise covariance matrices are time-varying. To address this problem, in this article, a novel adaptive recursive DCL method is proposed for multi-robot systems with time-varying measurement accuracy. Each robot estimates its pose and measurement noise covariance matrices simultaneously in a decentralized manner based on the constructed hierarchical Gaussian models using the variational Bayesian approach. Simulation and experimental results show that the proposed method has improved cooperative localization accuracy and estimation consistency but slightly heavier computational load than the existing recursive DCL method. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2021.3054005 |