Loading…
Hyperspectral Image Classification With Multiattention Fusion Network
Hyperspectral image (HSI) has hundreds of continuous bands that contain a lot of redundant information. Besides, a spatial patch of a hyperspectral cube often contains some pixels different from the center pixel category, which are usually called interference pixels. The existence of such interferen...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hyperspectral image (HSI) has hundreds of continuous bands that contain a lot of redundant information. Besides, a spatial patch of a hyperspectral cube often contains some pixels different from the center pixel category, which are usually called interference pixels. The existence of such interference pixels has a negative effect on extracting more discriminative information. Therefore, in this letter, a multiattention fusion network (MAFN) for HSI classification is proposed. Compared with the current state-of-the-art methods, MAFN uses band attention module (BAM) and spatial attention module (SAM), respectively, to alleviate the influence of redundant bands and interfering pixels. In this way, MAFN realizes feature reuse and obtains complementary information from different levels by combining multiattention and multilevel fusion mechanisms, which can extract more representative features. Experiments were conducted on two public HSI data sets to demonstrate the effectiveness of MAFN. Our source code is available at https://github.com/Li-ZK/MAFN-2021 . |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2021.3052346 |