Loading…
A Robust and Efficient Framework for Sports-Field Registration
We propose a novel framework to register sports-fields as they appear in broadcast sports videos. Unlike previous approaches, we particularly address the challenge of field- registration when: (a) there are not enough distinguishable features on the field, and (b) no prior knowledge is available abo...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a novel framework to register sports-fields as they appear in broadcast sports videos. Unlike previous approaches, we particularly address the challenge of field- registration when: (a) there are not enough distinguishable features on the field, and (b) no prior knowledge is available about the camera. To this end, we detect a grid of key- points distributed uniformly on the entire field instead of using only sparse local corners and line intersections, thereby extending the keypoint coverage to the texture-less parts of the field as well. To further improve keypoint based homography estimate, we differentialbly warp and align it with a set of dense field-features defined as normalized distance- map of pixels to their nearest lines and key-regions. We predict the keypoints and dense field-features simultaneously using a multi-task deep network to achieve computational efficiency. To have a comprehensive evaluation, we have compiled a new dataset called SportsFields which is collected from 192 video-clips from 5 different sports covering large environmental and camera variations. We empirically demonstrate that our algorithm not only achieves state of the art field-registration accuracy but also runs in real-time for HD resolution videos using commodity hardware. |
---|---|
ISSN: | 2642-9381 |
DOI: | 10.1109/WACV48630.2021.00198 |