Loading…
XPGAN: X-Ray Projected Generative Adversarial Network For Improving Covid-19 Image Classification
This work aims to fight against the current outbreak pandemic by developing a method to classify suspected infected COVID-19 cases. Driven by the urgency, due to the vastly increased number of patients and deaths worldwide, we rely on situationally pragmatic chest X-ray scans and state-of-the-art de...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work aims to fight against the current outbreak pandemic by developing a method to classify suspected infected COVID-19 cases. Driven by the urgency, due to the vastly increased number of patients and deaths worldwide, we rely on situationally pragmatic chest X-ray scans and state-of-the-art deep learning techniques to build a robust diagnosis for massive screening, early detection, and in-time isolation decision making. The proposed solution, X-ray Projected Generative Adversarial Network (XPGAN), addresses the most fundamental issue in training such a deep neural network on limited human-annotated datasets. By leveraging the generative adversarial network, we can synthesize a large amount of chest X-ray images with prior categories from more accurate 3D Computed Tomography data, including COVID-19, and jointly train a model with a few hundreds of positive samples. As a result, XPGAN outperforms the vanilla DenseNet121 models and other competing baselines trained on the same frontal chest X-ray images. |
---|---|
ISSN: | 1945-8452 |
DOI: | 10.1109/ISBI48211.2021.9434159 |