Loading…
Attention-Based Multi-Task Learning For Fine-Grained Image Classification
Fine-Grained Image Classification is an inherently challenging task because of its inter-class similarity and intra-class variance. Most existing studies solve this problem by localization-and-classification strategies, which, however, always causes the problem of information loss or heavy computati...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fine-Grained Image Classification is an inherently challenging task because of its inter-class similarity and intra-class variance. Most existing studies solve this problem by localization-and-classification strategies, which, however, always causes the problem of information loss or heavy computational expenses. Instead of localization-and-classification strategy, we propose a novel end-to-end optimization procedure named Multi-Task Attention Learning (MTAL), which reinforces the neural network' correspondence to attention regions. Experimental results on CUB-Birds and Stanford Cars show that our procedure distinctly outperforms the baselines and is comparable with state-of-the-art studies despite its simplicity*. |
---|---|
ISSN: | 2381-8549 |
DOI: | 10.1109/ICIP42928.2021.9506745 |