Loading…

Convective Precipitation Nowcasting Using U-Net Model

Convective precipitation nowcasting remains challenging due to the fast change in convective weather. Radar images are the most important data source in nowcasting research area. This study proposes a radar data-based U-Net model for precipitation nowcasting. The nowcasting problem is first transfor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-8
Main Authors: Han, Lei, Liang, He, Chen, Haonan, Zhang, Wei, Ge, Yurong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Convective precipitation nowcasting remains challenging due to the fast change in convective weather. Radar images are the most important data source in nowcasting research area. This study proposes a radar data-based U-Net model for precipitation nowcasting. The nowcasting problem is first transformed into an image-to-image translation problem in deep learning under the U-Net architecture, which is based on convolutional neural networks (CNNs). The input of the model is five consecutive radar images; the output is the predicted radar reflectivity image. The model consists of three operations: upsampling, downsampling, and skip connection. Three methods, U-Net, TREC, and TrajGRU, are used for comparison in the experiments. The experimental results show that both deep learning methods outperform the TREC method, and the CNN-based U-Net can achieve almost the same performance as TrajGRU which is a recurrent neural network (RNN)-based model. With the advantages that U-Net is simple, efficient, easy to understand, and customize, this result shows the great potential of CNN-based models in addressing time-series applications.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2021.3100847