Loading…
GMNet: Graded-Feature Multilabel-Learning Network for RGB-Thermal Urban Scene Semantic Segmentation
Semantic segmentation is a fundamental task in computer vision, and it has various applications in fields such as robotic sensing, video surveillance, and autonomous driving. A major research topic in urban road semantic segmentation is the proper integration and use of cross-modal information for f...
Saved in:
Published in: | IEEE transactions on image processing 2021, Vol.30, p.7790-7802 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Semantic segmentation is a fundamental task in computer vision, and it has various applications in fields such as robotic sensing, video surveillance, and autonomous driving. A major research topic in urban road semantic segmentation is the proper integration and use of cross-modal information for fusion. Here, we attempt to leverage inherent multimodal information and acquire graded features to develop a novel multilabel-learning network for RGB-thermal urban scene semantic segmentation. Specifically, we propose a strategy for graded-feature extraction to split multilevel features into junior, intermediate, and senior levels. Then, we integrate RGB and thermal modalities with two distinct fusion modules, namely a shallow feature fusion module and deep feature fusion module for junior and senior features. Finally, we use multilabel supervision to optimize the network in terms of semantic, binary, and boundary characteristics. Experimental results confirm that the proposed architecture, the graded-feature multilabel-learning network, outperforms state-of-the-art methods for urban scene semantic segmentation, and it can be generalized to depth data. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2021.3109518 |