Loading…
Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory
Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, si...
Saved in:
Published in: | IEEE transactions on electron devices 2021-12, Vol.68 (12), p.6365-6371 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323 |
container_end_page | 6371 |
container_issue | 12 |
container_start_page | 6365 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Michl, Jakob Grill, Alexander Waldhoer, Dominic Goes, Wolfgang Kaczer, Ben Linten, Dimitri Parvais, Bertrand Govoreanu, Bogdan Radu, Iuliana Waltl, Michael Grasser, Tibor |
description | Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, simple semiclassical approximations have been successfully used to describe this intricate mechanism. However, for the computation of charge transition rates at cryogenic temperatures, it is necessary to use the full quantum mechanical description based on Fermi's golden rule. Since this is computationally expensive and often not feasible, we discuss an efficient method based on the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the saddle point method and benchmark this approximation against the full model. We show that the approximation delivers excellent results and can, hence, be used to model charge trapping behavior at cryogenic temperatures. |
doi_str_mv | 10.1109/TED.2021.3116931 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9590558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9590558</ieee_id><sourcerecordid>2604924408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEuVxR-JiiXPK-pHE5oZCgUrlcQhny3HWbao2CU566L_HVStOq13NzI4-Qu4YTBkD_VjOXqYcOJsKxjIt2BmZsDTNE53J7JxMAJhKtFDiklwNwzqumZR8Qj5n3jeuwXakH12Nm6Zd0s7TYmXDEmkZbN8fTnakRdh3S2wbR0vc9hjsuAs4JN82jHT-RMsVdmF_Qy683Qx4e5rX5Od1VhbvyeLrbV48LxLHNRtjkSzPteNCKOuwqoTWXGplc_AKpYDcs7quq8qBc7ZSAKoSEuvcycoxJri4Jg_H3D50vzscRrPudqGNLw3PQMY0CSqq4KhyoRuGgN70odnasDcMzIGaidTMgZo5UYuW-6OlQcR_uU41pKkSf8FkZ7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604924408</pqid></control><display><type>article</type><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Waltl, Michael ; Grasser, Tibor</creator><creatorcontrib>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Waltl, Michael ; Grasser, Tibor</creatorcontrib><description>Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, simple semiclassical approximations have been successfully used to describe this intricate mechanism. However, for the computation of charge transition rates at cryogenic temperatures, it is necessary to use the full quantum mechanical description based on Fermi's golden rule. Since this is computationally expensive and often not feasible, we discuss an efficient method based on the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the saddle point method and benchmark this approximation against the full model. We show that the approximation delivers excellent results and can, hence, be used to model charge trapping behavior at cryogenic temperatures.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3116931</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced CMOS ; Approximation ; bias temperature instability (BTI) ; Computational modeling ; Couplings ; cryo-CMOS ; cryogenic ; Cryogenic engineering ; Cryogenic temperature ; Cryogenics ; IP networks ; Mathematical analysis ; MOS devices ; Oscillators ; physical modeling ; Quantum mechanics ; Room temperature ; Saddle points ; Stationary state ; Transistors ; Trapping ; Wave functions</subject><ispartof>IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6365-6371</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323</citedby><cites>FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323</cites><orcidid>0000-0001-6042-759X ; 0000-0003-1615-1033 ; 0000-0002-1484-4007 ; 0000-0003-0769-7069 ; 0000-0003-2539-3245 ; 0000-0002-7230-7218 ; 0000-0002-8631-5681 ; 0000-0001-6536-2238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9590558$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Michl, Jakob</creatorcontrib><creatorcontrib>Grill, Alexander</creatorcontrib><creatorcontrib>Waldhoer, Dominic</creatorcontrib><creatorcontrib>Goes, Wolfgang</creatorcontrib><creatorcontrib>Kaczer, Ben</creatorcontrib><creatorcontrib>Linten, Dimitri</creatorcontrib><creatorcontrib>Parvais, Bertrand</creatorcontrib><creatorcontrib>Govoreanu, Bogdan</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Waltl, Michael</creatorcontrib><creatorcontrib>Grasser, Tibor</creatorcontrib><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, simple semiclassical approximations have been successfully used to describe this intricate mechanism. However, for the computation of charge transition rates at cryogenic temperatures, it is necessary to use the full quantum mechanical description based on Fermi's golden rule. Since this is computationally expensive and often not feasible, we discuss an efficient method based on the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the saddle point method and benchmark this approximation against the full model. We show that the approximation delivers excellent results and can, hence, be used to model charge trapping behavior at cryogenic temperatures.</description><subject>Advanced CMOS</subject><subject>Approximation</subject><subject>bias temperature instability (BTI)</subject><subject>Computational modeling</subject><subject>Couplings</subject><subject>cryo-CMOS</subject><subject>cryogenic</subject><subject>Cryogenic engineering</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>IP networks</subject><subject>Mathematical analysis</subject><subject>MOS devices</subject><subject>Oscillators</subject><subject>physical modeling</subject><subject>Quantum mechanics</subject><subject>Room temperature</subject><subject>Saddle points</subject><subject>Stationary state</subject><subject>Transistors</subject><subject>Trapping</subject><subject>Wave functions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEuVxR-JiiXPK-pHE5oZCgUrlcQhny3HWbao2CU566L_HVStOq13NzI4-Qu4YTBkD_VjOXqYcOJsKxjIt2BmZsDTNE53J7JxMAJhKtFDiklwNwzqumZR8Qj5n3jeuwXakH12Nm6Zd0s7TYmXDEmkZbN8fTnakRdh3S2wbR0vc9hjsuAs4JN82jHT-RMsVdmF_Qy683Qx4e5rX5Od1VhbvyeLrbV48LxLHNRtjkSzPteNCKOuwqoTWXGplc_AKpYDcs7quq8qBc7ZSAKoSEuvcycoxJri4Jg_H3D50vzscRrPudqGNLw3PQMY0CSqq4KhyoRuGgN70odnasDcMzIGaidTMgZo5UYuW-6OlQcR_uU41pKkSf8FkZ7M</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Michl, Jakob</creator><creator>Grill, Alexander</creator><creator>Waldhoer, Dominic</creator><creator>Goes, Wolfgang</creator><creator>Kaczer, Ben</creator><creator>Linten, Dimitri</creator><creator>Parvais, Bertrand</creator><creator>Govoreanu, Bogdan</creator><creator>Radu, Iuliana</creator><creator>Waltl, Michael</creator><creator>Grasser, Tibor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6042-759X</orcidid><orcidid>https://orcid.org/0000-0003-1615-1033</orcidid><orcidid>https://orcid.org/0000-0002-1484-4007</orcidid><orcidid>https://orcid.org/0000-0003-0769-7069</orcidid><orcidid>https://orcid.org/0000-0003-2539-3245</orcidid><orcidid>https://orcid.org/0000-0002-7230-7218</orcidid><orcidid>https://orcid.org/0000-0002-8631-5681</orcidid><orcidid>https://orcid.org/0000-0001-6536-2238</orcidid></search><sort><creationdate>20211201</creationdate><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory</title><author>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Waltl, Michael ; Grasser, Tibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advanced CMOS</topic><topic>Approximation</topic><topic>bias temperature instability (BTI)</topic><topic>Computational modeling</topic><topic>Couplings</topic><topic>cryo-CMOS</topic><topic>cryogenic</topic><topic>Cryogenic engineering</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>IP networks</topic><topic>Mathematical analysis</topic><topic>MOS devices</topic><topic>Oscillators</topic><topic>physical modeling</topic><topic>Quantum mechanics</topic><topic>Room temperature</topic><topic>Saddle points</topic><topic>Stationary state</topic><topic>Transistors</topic><topic>Trapping</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michl, Jakob</creatorcontrib><creatorcontrib>Grill, Alexander</creatorcontrib><creatorcontrib>Waldhoer, Dominic</creatorcontrib><creatorcontrib>Goes, Wolfgang</creatorcontrib><creatorcontrib>Kaczer, Ben</creatorcontrib><creatorcontrib>Linten, Dimitri</creatorcontrib><creatorcontrib>Parvais, Bertrand</creatorcontrib><creatorcontrib>Govoreanu, Bogdan</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Waltl, Michael</creatorcontrib><creatorcontrib>Grasser, Tibor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michl, Jakob</au><au>Grill, Alexander</au><au>Waldhoer, Dominic</au><au>Goes, Wolfgang</au><au>Kaczer, Ben</au><au>Linten, Dimitri</au><au>Parvais, Bertrand</au><au>Govoreanu, Bogdan</au><au>Radu, Iuliana</au><au>Waltl, Michael</au><au>Grasser, Tibor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>6365</spage><epage>6371</epage><pages>6365-6371</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, simple semiclassical approximations have been successfully used to describe this intricate mechanism. However, for the computation of charge transition rates at cryogenic temperatures, it is necessary to use the full quantum mechanical description based on Fermi's golden rule. Since this is computationally expensive and often not feasible, we discuss an efficient method based on the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the saddle point method and benchmark this approximation against the full model. We show that the approximation delivers excellent results and can, hence, be used to model charge trapping behavior at cryogenic temperatures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3116931</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6042-759X</orcidid><orcidid>https://orcid.org/0000-0003-1615-1033</orcidid><orcidid>https://orcid.org/0000-0002-1484-4007</orcidid><orcidid>https://orcid.org/0000-0003-0769-7069</orcidid><orcidid>https://orcid.org/0000-0003-2539-3245</orcidid><orcidid>https://orcid.org/0000-0002-7230-7218</orcidid><orcidid>https://orcid.org/0000-0002-8631-5681</orcidid><orcidid>https://orcid.org/0000-0001-6536-2238</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6365-6371 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_9590558 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Advanced CMOS Approximation bias temperature instability (BTI) Computational modeling Couplings cryo-CMOS cryogenic Cryogenic engineering Cryogenic temperature Cryogenics IP networks Mathematical analysis MOS devices Oscillators physical modeling Quantum mechanics Room temperature Saddle points Stationary state Transistors Trapping Wave functions |
title | Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Modeling%20of%20Charge%20Trapping%20at%20Cryogenic%20Temperatures-Part%20I:%20Theory&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Michl,%20Jakob&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=6365&rft.epage=6371&rft.pages=6365-6371&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3116931&rft_dat=%3Cproquest_ieee_%3E2604924408%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604924408&rft_id=info:pmid/&rft_ieee_id=9590558&rfr_iscdi=true |