Loading…

Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory

Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, si...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2021-12, Vol.68 (12), p.6365-6371
Main Authors: Michl, Jakob, Grill, Alexander, Waldhoer, Dominic, Goes, Wolfgang, Kaczer, Ben, Linten, Dimitri, Parvais, Bertrand, Govoreanu, Bogdan, Radu, Iuliana, Waltl, Michael, Grasser, Tibor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323
cites cdi_FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323
container_end_page 6371
container_issue 12
container_start_page 6365
container_title IEEE transactions on electron devices
container_volume 68
creator Michl, Jakob
Grill, Alexander
Waldhoer, Dominic
Goes, Wolfgang
Kaczer, Ben
Linten, Dimitri
Parvais, Bertrand
Govoreanu, Bogdan
Radu, Iuliana
Waltl, Michael
Grasser, Tibor
description Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, simple semiclassical approximations have been successfully used to describe this intricate mechanism. However, for the computation of charge transition rates at cryogenic temperatures, it is necessary to use the full quantum mechanical description based on Fermi's golden rule. Since this is computationally expensive and often not feasible, we discuss an efficient method based on the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the saddle point method and benchmark this approximation against the full model. We show that the approximation delivers excellent results and can, hence, be used to model charge trapping behavior at cryogenic temperatures.
doi_str_mv 10.1109/TED.2021.3116931
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9590558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9590558</ieee_id><sourcerecordid>2604924408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEuVxR-JiiXPK-pHE5oZCgUrlcQhny3HWbao2CU566L_HVStOq13NzI4-Qu4YTBkD_VjOXqYcOJsKxjIt2BmZsDTNE53J7JxMAJhKtFDiklwNwzqumZR8Qj5n3jeuwXakH12Nm6Zd0s7TYmXDEmkZbN8fTnakRdh3S2wbR0vc9hjsuAs4JN82jHT-RMsVdmF_Qy683Qx4e5rX5Od1VhbvyeLrbV48LxLHNRtjkSzPteNCKOuwqoTWXGplc_AKpYDcs7quq8qBc7ZSAKoSEuvcycoxJri4Jg_H3D50vzscRrPudqGNLw3PQMY0CSqq4KhyoRuGgN70odnasDcMzIGaidTMgZo5UYuW-6OlQcR_uU41pKkSf8FkZ7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604924408</pqid></control><display><type>article</type><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Waltl, Michael ; Grasser, Tibor</creator><creatorcontrib>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Waltl, Michael ; Grasser, Tibor</creatorcontrib><description>Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, simple semiclassical approximations have been successfully used to describe this intricate mechanism. However, for the computation of charge transition rates at cryogenic temperatures, it is necessary to use the full quantum mechanical description based on Fermi's golden rule. Since this is computationally expensive and often not feasible, we discuss an efficient method based on the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the saddle point method and benchmark this approximation against the full model. We show that the approximation delivers excellent results and can, hence, be used to model charge trapping behavior at cryogenic temperatures.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3116931</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced CMOS ; Approximation ; bias temperature instability (BTI) ; Computational modeling ; Couplings ; cryo-CMOS ; cryogenic ; Cryogenic engineering ; Cryogenic temperature ; Cryogenics ; IP networks ; Mathematical analysis ; MOS devices ; Oscillators ; physical modeling ; Quantum mechanics ; Room temperature ; Saddle points ; Stationary state ; Transistors ; Trapping ; Wave functions</subject><ispartof>IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6365-6371</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323</citedby><cites>FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323</cites><orcidid>0000-0001-6042-759X ; 0000-0003-1615-1033 ; 0000-0002-1484-4007 ; 0000-0003-0769-7069 ; 0000-0003-2539-3245 ; 0000-0002-7230-7218 ; 0000-0002-8631-5681 ; 0000-0001-6536-2238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9590558$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Michl, Jakob</creatorcontrib><creatorcontrib>Grill, Alexander</creatorcontrib><creatorcontrib>Waldhoer, Dominic</creatorcontrib><creatorcontrib>Goes, Wolfgang</creatorcontrib><creatorcontrib>Kaczer, Ben</creatorcontrib><creatorcontrib>Linten, Dimitri</creatorcontrib><creatorcontrib>Parvais, Bertrand</creatorcontrib><creatorcontrib>Govoreanu, Bogdan</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Waltl, Michael</creatorcontrib><creatorcontrib>Grasser, Tibor</creatorcontrib><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, simple semiclassical approximations have been successfully used to describe this intricate mechanism. However, for the computation of charge transition rates at cryogenic temperatures, it is necessary to use the full quantum mechanical description based on Fermi's golden rule. Since this is computationally expensive and often not feasible, we discuss an efficient method based on the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the saddle point method and benchmark this approximation against the full model. We show that the approximation delivers excellent results and can, hence, be used to model charge trapping behavior at cryogenic temperatures.</description><subject>Advanced CMOS</subject><subject>Approximation</subject><subject>bias temperature instability (BTI)</subject><subject>Computational modeling</subject><subject>Couplings</subject><subject>cryo-CMOS</subject><subject>cryogenic</subject><subject>Cryogenic engineering</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>IP networks</subject><subject>Mathematical analysis</subject><subject>MOS devices</subject><subject>Oscillators</subject><subject>physical modeling</subject><subject>Quantum mechanics</subject><subject>Room temperature</subject><subject>Saddle points</subject><subject>Stationary state</subject><subject>Transistors</subject><subject>Trapping</subject><subject>Wave functions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEuVxR-JiiXPK-pHE5oZCgUrlcQhny3HWbao2CU566L_HVStOq13NzI4-Qu4YTBkD_VjOXqYcOJsKxjIt2BmZsDTNE53J7JxMAJhKtFDiklwNwzqumZR8Qj5n3jeuwXakH12Nm6Zd0s7TYmXDEmkZbN8fTnakRdh3S2wbR0vc9hjsuAs4JN82jHT-RMsVdmF_Qy683Qx4e5rX5Od1VhbvyeLrbV48LxLHNRtjkSzPteNCKOuwqoTWXGplc_AKpYDcs7quq8qBc7ZSAKoSEuvcycoxJri4Jg_H3D50vzscRrPudqGNLw3PQMY0CSqq4KhyoRuGgN70odnasDcMzIGaidTMgZo5UYuW-6OlQcR_uU41pKkSf8FkZ7M</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Michl, Jakob</creator><creator>Grill, Alexander</creator><creator>Waldhoer, Dominic</creator><creator>Goes, Wolfgang</creator><creator>Kaczer, Ben</creator><creator>Linten, Dimitri</creator><creator>Parvais, Bertrand</creator><creator>Govoreanu, Bogdan</creator><creator>Radu, Iuliana</creator><creator>Waltl, Michael</creator><creator>Grasser, Tibor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6042-759X</orcidid><orcidid>https://orcid.org/0000-0003-1615-1033</orcidid><orcidid>https://orcid.org/0000-0002-1484-4007</orcidid><orcidid>https://orcid.org/0000-0003-0769-7069</orcidid><orcidid>https://orcid.org/0000-0003-2539-3245</orcidid><orcidid>https://orcid.org/0000-0002-7230-7218</orcidid><orcidid>https://orcid.org/0000-0002-8631-5681</orcidid><orcidid>https://orcid.org/0000-0001-6536-2238</orcidid></search><sort><creationdate>20211201</creationdate><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory</title><author>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Waltl, Michael ; Grasser, Tibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advanced CMOS</topic><topic>Approximation</topic><topic>bias temperature instability (BTI)</topic><topic>Computational modeling</topic><topic>Couplings</topic><topic>cryo-CMOS</topic><topic>cryogenic</topic><topic>Cryogenic engineering</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>IP networks</topic><topic>Mathematical analysis</topic><topic>MOS devices</topic><topic>Oscillators</topic><topic>physical modeling</topic><topic>Quantum mechanics</topic><topic>Room temperature</topic><topic>Saddle points</topic><topic>Stationary state</topic><topic>Transistors</topic><topic>Trapping</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michl, Jakob</creatorcontrib><creatorcontrib>Grill, Alexander</creatorcontrib><creatorcontrib>Waldhoer, Dominic</creatorcontrib><creatorcontrib>Goes, Wolfgang</creatorcontrib><creatorcontrib>Kaczer, Ben</creatorcontrib><creatorcontrib>Linten, Dimitri</creatorcontrib><creatorcontrib>Parvais, Bertrand</creatorcontrib><creatorcontrib>Govoreanu, Bogdan</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Waltl, Michael</creatorcontrib><creatorcontrib>Grasser, Tibor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michl, Jakob</au><au>Grill, Alexander</au><au>Waldhoer, Dominic</au><au>Goes, Wolfgang</au><au>Kaczer, Ben</au><au>Linten, Dimitri</au><au>Parvais, Bertrand</au><au>Govoreanu, Bogdan</au><au>Radu, Iuliana</au><au>Waltl, Michael</au><au>Grasser, Tibor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>6365</spage><epage>6371</epage><pages>6365-6371</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Charge trapping is arguably the most important detrimental mechanism distorting the ideal characteristics of MOS transistors, and nonradiative multiphonon (NMP) models have been demonstrated to provide a very accurate description. For the calculation of the NMP rates at room temperature or above, simple semiclassical approximations have been successfully used to describe this intricate mechanism. However, for the computation of charge transition rates at cryogenic temperatures, it is necessary to use the full quantum mechanical description based on Fermi's golden rule. Since this is computationally expensive and often not feasible, we discuss an efficient method based on the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the saddle point method and benchmark this approximation against the full model. We show that the approximation delivers excellent results and can, hence, be used to model charge trapping behavior at cryogenic temperatures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3116931</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6042-759X</orcidid><orcidid>https://orcid.org/0000-0003-1615-1033</orcidid><orcidid>https://orcid.org/0000-0002-1484-4007</orcidid><orcidid>https://orcid.org/0000-0003-0769-7069</orcidid><orcidid>https://orcid.org/0000-0003-2539-3245</orcidid><orcidid>https://orcid.org/0000-0002-7230-7218</orcidid><orcidid>https://orcid.org/0000-0002-8631-5681</orcidid><orcidid>https://orcid.org/0000-0001-6536-2238</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6365-6371
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9590558
source IEEE Electronic Library (IEL) Journals
subjects Advanced CMOS
Approximation
bias temperature instability (BTI)
Computational modeling
Couplings
cryo-CMOS
cryogenic
Cryogenic engineering
Cryogenic temperature
Cryogenics
IP networks
Mathematical analysis
MOS devices
Oscillators
physical modeling
Quantum mechanics
Room temperature
Saddle points
Stationary state
Transistors
Trapping
Wave functions
title Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Modeling%20of%20Charge%20Trapping%20at%20Cryogenic%20Temperatures-Part%20I:%20Theory&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Michl,%20Jakob&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=6365&rft.epage=6371&rft.pages=6365-6371&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3116931&rft_dat=%3Cproquest_ieee_%3E2604924408%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-936779c2338acebb3992498a70f8e4307f1dddbbc0ccab8008b34ed7c4bc11323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604924408&rft_id=info:pmid/&rft_ieee_id=9590558&rfr_iscdi=true