Loading…
Parallel Bayesian Active Learning using Dropout for Optimizing High-Speed Channel Equalization
This work realizes the parallelization of Bayesian Active Learning using Dropout (BAL-DO) and is successfully applied for optimizing equalization settings for high-speed channel receivers (RX). In this paper, parallel BAL-DO can achieve the largest horizontal eye (HEYE) opening and its corresponding...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work realizes the parallelization of Bayesian Active Learning using Dropout (BAL-DO) and is successfully applied for optimizing equalization settings for high-speed channel receivers (RX). In this paper, parallel BAL-DO can achieve the largest horizontal eye (HEYE) opening and its corresponding equalization setting 12 times faster, on average, than the previously reported sequential BAL-DO. This corresponds to an average of 40-50 times faster than standard exhaustive time-domain simulations. Moreover, the HEYE prediction accuracy across the whole design space is close to 3 times better while using parallelization than sequential BAL-DO. With these outstanding results, parallel BAL-DO dramatically improves the efficiency for RX equalization optimization and greatly reduces the computing resources and time needed. |
---|---|
ISSN: | 2165-4115 |
DOI: | 10.1109/EPEPS51341.2021.9609205 |