Loading…
Parallel Bayesian Active Learning using Dropout for Optimizing High-Speed Channel Equalization
This work realizes the parallelization of Bayesian Active Learning using Dropout (BAL-DO) and is successfully applied for optimizing equalization settings for high-speed channel receivers (RX). In this paper, parallel BAL-DO can achieve the largest horizontal eye (HEYE) opening and its corresponding...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Yang, Xianbo Torun, Hakki M. Tang, Junyan Paladhi, Pavel Roy Zhang, Yanyan Becker, Wiren D. Hejase, Jose A. Swaminathan, Madhavan |
description | This work realizes the parallelization of Bayesian Active Learning using Dropout (BAL-DO) and is successfully applied for optimizing equalization settings for high-speed channel receivers (RX). In this paper, parallel BAL-DO can achieve the largest horizontal eye (HEYE) opening and its corresponding equalization setting 12 times faster, on average, than the previously reported sequential BAL-DO. This corresponds to an average of 40-50 times faster than standard exhaustive time-domain simulations. Moreover, the HEYE prediction accuracy across the whole design space is close to 3 times better while using parallelization than sequential BAL-DO. With these outstanding results, parallel BAL-DO dramatically improves the efficiency for RX equalization optimization and greatly reduces the computing resources and time needed. |
doi_str_mv | 10.1109/EPEPS51341.2021.9609205 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9609205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9609205</ieee_id><sourcerecordid>9609205</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-5342075f21002543ae72147c2d86900f18c03368ad49489f17a3fbe1cd81de4d3</originalsourceid><addsrcrecordid>eNotkM1OwkAURkcTEwn2CVw4L1C8d_46s8RawYQEEnQrGdtbGFPa2hYTeHolsvlOchZn8TH2gDBBBPeYrbLVWqNUOBEgcOIMOAH6ikUusWiMVkoYp6_ZSKDRsULUtyzq-y8AkGitdWbEPla-81VFFX_yR-qDr_k0H8IP8QX5rg71lh_68z53TdscBl42HV-2Q9iH01nPw3YXr1uigqc7X9d_oez74Ktw8kNo6jt2U_qqp-jCMXt_yd7SebxYzl7T6SIOAuQQa6kEJLoUCCC0kp4SgSrJRWGNAyjR5iClsb5QTllXYuJl-UmYFxYLUoUcs_v_biCiTduFve-Om8sj8heRiVWF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel Bayesian Active Learning using Dropout for Optimizing High-Speed Channel Equalization</title><source>IEEE Xplore All Conference Series</source><creator>Yang, Xianbo ; Torun, Hakki M. ; Tang, Junyan ; Paladhi, Pavel Roy ; Zhang, Yanyan ; Becker, Wiren D. ; Hejase, Jose A. ; Swaminathan, Madhavan</creator><creatorcontrib>Yang, Xianbo ; Torun, Hakki M. ; Tang, Junyan ; Paladhi, Pavel Roy ; Zhang, Yanyan ; Becker, Wiren D. ; Hejase, Jose A. ; Swaminathan, Madhavan</creatorcontrib><description>This work realizes the parallelization of Bayesian Active Learning using Dropout (BAL-DO) and is successfully applied for optimizing equalization settings for high-speed channel receivers (RX). In this paper, parallel BAL-DO can achieve the largest horizontal eye (HEYE) opening and its corresponding equalization setting 12 times faster, on average, than the previously reported sequential BAL-DO. This corresponds to an average of 40-50 times faster than standard exhaustive time-domain simulations. Moreover, the HEYE prediction accuracy across the whole design space is close to 3 times better while using parallelization than sequential BAL-DO. With these outstanding results, parallel BAL-DO dramatically improves the efficiency for RX equalization optimization and greatly reduces the computing resources and time needed.</description><identifier>EISSN: 2165-4115</identifier><identifier>EISBN: 9781665442695</identifier><identifier>EISBN: 1665442697</identifier><identifier>DOI: 10.1109/EPEPS51341.2021.9609205</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Conferences ; Electric potential ; Optical signal processing ; Optimization ; Receivers ; Time-domain analysis</subject><ispartof>2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2021, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9609205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9609205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Xianbo</creatorcontrib><creatorcontrib>Torun, Hakki M.</creatorcontrib><creatorcontrib>Tang, Junyan</creatorcontrib><creatorcontrib>Paladhi, Pavel Roy</creatorcontrib><creatorcontrib>Zhang, Yanyan</creatorcontrib><creatorcontrib>Becker, Wiren D.</creatorcontrib><creatorcontrib>Hejase, Jose A.</creatorcontrib><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><title>Parallel Bayesian Active Learning using Dropout for Optimizing High-Speed Channel Equalization</title><title>2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)</title><addtitle>EPEPS</addtitle><description>This work realizes the parallelization of Bayesian Active Learning using Dropout (BAL-DO) and is successfully applied for optimizing equalization settings for high-speed channel receivers (RX). In this paper, parallel BAL-DO can achieve the largest horizontal eye (HEYE) opening and its corresponding equalization setting 12 times faster, on average, than the previously reported sequential BAL-DO. This corresponds to an average of 40-50 times faster than standard exhaustive time-domain simulations. Moreover, the HEYE prediction accuracy across the whole design space is close to 3 times better while using parallelization than sequential BAL-DO. With these outstanding results, parallel BAL-DO dramatically improves the efficiency for RX equalization optimization and greatly reduces the computing resources and time needed.</description><subject>Bayes methods</subject><subject>Conferences</subject><subject>Electric potential</subject><subject>Optical signal processing</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Time-domain analysis</subject><issn>2165-4115</issn><isbn>9781665442695</isbn><isbn>1665442697</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwkAURkcTEwn2CVw4L1C8d_46s8RawYQEEnQrGdtbGFPa2hYTeHolsvlOchZn8TH2gDBBBPeYrbLVWqNUOBEgcOIMOAH6ikUusWiMVkoYp6_ZSKDRsULUtyzq-y8AkGitdWbEPla-81VFFX_yR-qDr_k0H8IP8QX5rg71lh_68z53TdscBl42HV-2Q9iH01nPw3YXr1uigqc7X9d_oez74Ktw8kNo6jt2U_qqp-jCMXt_yd7SebxYzl7T6SIOAuQQa6kEJLoUCCC0kp4SgSrJRWGNAyjR5iClsb5QTllXYuJl-UmYFxYLUoUcs_v_biCiTduFve-Om8sj8heRiVWF</recordid><startdate>20211017</startdate><enddate>20211017</enddate><creator>Yang, Xianbo</creator><creator>Torun, Hakki M.</creator><creator>Tang, Junyan</creator><creator>Paladhi, Pavel Roy</creator><creator>Zhang, Yanyan</creator><creator>Becker, Wiren D.</creator><creator>Hejase, Jose A.</creator><creator>Swaminathan, Madhavan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211017</creationdate><title>Parallel Bayesian Active Learning using Dropout for Optimizing High-Speed Channel Equalization</title><author>Yang, Xianbo ; Torun, Hakki M. ; Tang, Junyan ; Paladhi, Pavel Roy ; Zhang, Yanyan ; Becker, Wiren D. ; Hejase, Jose A. ; Swaminathan, Madhavan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-5342075f21002543ae72147c2d86900f18c03368ad49489f17a3fbe1cd81de4d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayes methods</topic><topic>Conferences</topic><topic>Electric potential</topic><topic>Optical signal processing</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Time-domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xianbo</creatorcontrib><creatorcontrib>Torun, Hakki M.</creatorcontrib><creatorcontrib>Tang, Junyan</creatorcontrib><creatorcontrib>Paladhi, Pavel Roy</creatorcontrib><creatorcontrib>Zhang, Yanyan</creatorcontrib><creatorcontrib>Becker, Wiren D.</creatorcontrib><creatorcontrib>Hejase, Jose A.</creatorcontrib><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Xianbo</au><au>Torun, Hakki M.</au><au>Tang, Junyan</au><au>Paladhi, Pavel Roy</au><au>Zhang, Yanyan</au><au>Becker, Wiren D.</au><au>Hejase, Jose A.</au><au>Swaminathan, Madhavan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel Bayesian Active Learning using Dropout for Optimizing High-Speed Channel Equalization</atitle><btitle>2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)</btitle><stitle>EPEPS</stitle><date>2021-10-17</date><risdate>2021</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><eissn>2165-4115</eissn><eisbn>9781665442695</eisbn><eisbn>1665442697</eisbn><abstract>This work realizes the parallelization of Bayesian Active Learning using Dropout (BAL-DO) and is successfully applied for optimizing equalization settings for high-speed channel receivers (RX). In this paper, parallel BAL-DO can achieve the largest horizontal eye (HEYE) opening and its corresponding equalization setting 12 times faster, on average, than the previously reported sequential BAL-DO. This corresponds to an average of 40-50 times faster than standard exhaustive time-domain simulations. Moreover, the HEYE prediction accuracy across the whole design space is close to 3 times better while using parallelization than sequential BAL-DO. With these outstanding results, parallel BAL-DO dramatically improves the efficiency for RX equalization optimization and greatly reduces the computing resources and time needed.</abstract><pub>IEEE</pub><doi>10.1109/EPEPS51341.2021.9609205</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2165-4115 |
ispartof | 2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2021, p.1-3 |
issn | 2165-4115 |
language | eng |
recordid | cdi_ieee_primary_9609205 |
source | IEEE Xplore All Conference Series |
subjects | Bayes methods Conferences Electric potential Optical signal processing Optimization Receivers Time-domain analysis |
title | Parallel Bayesian Active Learning using Dropout for Optimizing High-Speed Channel Equalization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20Bayesian%20Active%20Learning%20using%20Dropout%20for%20Optimizing%20High-Speed%20Channel%20Equalization&rft.btitle=2021%20IEEE%2030th%20Conference%20on%20Electrical%20Performance%20of%20Electronic%20Packaging%20and%20Systems%20(EPEPS)&rft.au=Yang,%20Xianbo&rft.date=2021-10-17&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.eissn=2165-4115&rft_id=info:doi/10.1109/EPEPS51341.2021.9609205&rft.eisbn=9781665442695&rft.eisbn_list=1665442697&rft_dat=%3Cieee_CHZPO%3E9609205%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-5342075f21002543ae72147c2d86900f18c03368ad49489f17a3fbe1cd81de4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9609205&rfr_iscdi=true |