Loading…

Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on Action Planning: A Behavioural and EEG Study

Action planning is an important decision-making process, which can be specially affected by environment. Response selection during action planning has been demonstrated to be modulated by tVNS. Therefore, tVNS shows a great potential for modulating the action planning process. We aimed to explore th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.1675-1683
Main Authors: Chen, Long, Zhang, Jiasheng, Wang, Zhongpeng, Zhang, Xin, Zhang, Lei, Xu, Minpeng, Liu, Shuang, Ming, Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Action planning is an important decision-making process, which can be specially affected by environment. Response selection during action planning has been demonstrated to be modulated by tVNS. Therefore, tVNS shows a great potential for modulating the action planning process. We aimed to explore the tVNS-induced effect on action planning in behavioural and electrophysiology. Twenty-eight participants were randomly divided into two groups (active group and sham group). A single-blind, sham-controlled between-subject design was applied to explore the effect of online-tVNS (i.e., tVNS overlapping with the task) on action planning paradigm. We measured and compared reaction time (RT) and movement-related cortical potentials (MRCPs) before and after tVNS between active and sham groups. As compared to sham group, for the ipsilateral hand/contralateral hemisphere relative to the stimulated side, active tVNS significantly reduced the reaction time and decreased the MRCP amplitude mainly in the challenging tasks. Our results indicate that tVNS can produce a lateralization effect on action planning, especially plays an important role in the more challenging tasks as reflected both in the behavioural and electrophysiological results.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2021.3131497