Loading…

CSI-IANet: An Inception Attention Network for Human-Human Interaction Recognition Based on CSI Signal

In recent years, Wi-Fi infrastructures have become ubiquitous, providing device-free passive-sensing features. Wi-Fi signals can be affected by their reflection, refraction, and absorption by moving objects in their path. The channel state information (CSI), a signal property indicator, of the Wi-Fi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.166624-166638
Main Authors: Kabir, M. Humayun, Rahman, M. Hafizur, Shin, Wonjae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, Wi-Fi infrastructures have become ubiquitous, providing device-free passive-sensing features. Wi-Fi signals can be affected by their reflection, refraction, and absorption by moving objects in their path. The channel state information (CSI), a signal property indicator, of the Wi-Fi signal can be analyzed for human activity recognition (HAR). Deep learning-based HAR models can enhance performance and accuracy without sacrificing computational efficiency. However, to save computational power, an inception network, which uses a variety of techniques to boost speed and accuracy, can be adopted. In contrast, the concept of spatial attention can be applied to obtain refined features. In this paper, we propose a human-human interaction (HHI) classifier, CSI-IANet, which uses a modified inception CNN with a spatial-attention mechanism. The CSI-IANet consists of three steps: i) data processing, ii) feature extraction, and iii) recognition. The data processing layer first uses the second-order Butterworth low-pass filter to denoise the CSI signal and then segment it before feeding it to the model. The feature extraction layer uses a multilayer modified inception CNN with an attention mechanism that uses spatial attention in an intense structure to extract features from captured CSI signals. Finally, the refined features are exploited by the recognition section to determine HHIs correctly. To validate the performance of the proposed CSI-IANet, a publicly available HHIs CSI dataset with a total of 4800 trials of 12 interactions was used. The performance of the proposed model was compared to those of existing state-of-the-art methods. The experimental results show that CSI-IANet achieved an average accuracy of 91.30%, which is better than that of the existing best method by 5%.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3134794