Loading…
Representative Multi-Domain Feature Selection Based Cross-Domain Few-Shot Classification
Typical few-shot learning methods implicitly assume that the meta-training dataset and the meta-test dataset come from the same domain, which greatly limits the application of few-shot learning methods. To deal with this limitation, cross-domain few-shot classification has been proposed, in which th...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Typical few-shot learning methods implicitly assume that the meta-training dataset and the meta-test dataset come from the same domain, which greatly limits the application of few-shot learning methods. To deal with this limitation, cross-domain few-shot classification has been proposed, in which there is a significant difference between the meta-training set as the source domain and the meta-test set as the target domain. To address this problem, we introduce the idea of multi-domain feature selection and propose representative multi-domain feature selection (RMFS) algorithm, which optimizes the multi-domain feature extraction stage and the multi-domain feature selection stage. The effectiveness of the proposed algorithm is demonstrated by experiments on the benchmark dataset Meta-Dataset. |
---|---|
ISSN: | 2575-4955 |
DOI: | 10.1109/IC-NIDC54101.2021.9660577 |