Loading…
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank
This work presents a novel approach for semi-supervised semantic segmentation. The key element of this approach is our contrastive learning module that enforces the segmentation network to yield similar pixel-level feature representations for same-class samples across the whole dataset. To achieve t...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents a novel approach for semi-supervised semantic segmentation. The key element of this approach is our contrastive learning module that enforces the segmentation network to yield similar pixel-level feature representations for same-class samples across the whole dataset. To achieve this, we maintain a memory bank which is continuously updated with relevant and high-quality feature vectors from labeled data. In an end-to-end training, the features from both labeled and unlabeled data are optimized to be similar to same-class samples from the memory bank. Our approach not only outperforms the current state-of-the-art for semi-supervised semantic segmentation but also for semi-supervised domain adaptation on well-known public benchmarks, with larger improvements on the most challenging scenarios, i.e., less available labeled data. Code is available at https://github.com/Shathe/SemiSeg-Contrastive |
---|---|
ISSN: | 2380-7504 |
DOI: | 10.1109/ICCV48922.2021.00811 |