Loading…
Rethinking preventing class-collapsing in metric learning with margin-based losses
Metric learning seeks perceptual embeddings where visually similar instances are close and dissimilar instances are apart, but learned representations can be sub-optimal when the distribution of intra-class samples is diverse and distinct sub-clusters are present. Although theoretically with optimal...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metric learning seeks perceptual embeddings where visually similar instances are close and dissimilar instances are apart, but learned representations can be sub-optimal when the distribution of intra-class samples is diverse and distinct sub-clusters are present. Although theoretically with optimal assumptions, margin-based losses such as the triplet loss and margin loss have a diverse family of solutions. We theoretically prove and empirically show that under reasonable noise assumptions, margin-based losses tend to project all samples of a class with various modes onto a single point in the embedding space, resulting in class collapse that usually renders the space ill-sorted for classification or retrieval. To address this problem, we propose a simple modification to the embedding losses such that each sample selects its nearest same-class counterpart in a batch as the positive element in the tuple. This allows for the presence of multiple sub-clusters within each class. The adaptation can be integrated into a wide range of metric learning losses. Our method demonstrates clear benefits on various fine-grained image retrieval datasets over a variety of existing losses; qualitative retrieval results show that samples with similar visual patterns are indeed closer in the embedding space. |
---|---|
ISSN: | 2380-7504 |
DOI: | 10.1109/ICCV48922.2021.01015 |