Loading…
Extreme-Quality Computational Imaging via Degradation Framework
To meet the space limitation of optical elements, free-form surfaces or high-order aspherical lenses are adopted in mobile cameras to compress volume. However, the application of free-form surfaces also introduces the problem of image quality mutation. Existing model-based deconvolution methods are...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To meet the space limitation of optical elements, free-form surfaces or high-order aspherical lenses are adopted in mobile cameras to compress volume. However, the application of free-form surfaces also introduces the problem of image quality mutation. Existing model-based deconvolution methods are inefficient in dealing with the degradation that shows a wide range of spatial variants over regions. And the deep learning techniques in low-level and physics-based vision suffer from a lack of accurate data. To address this issue, we develop a degradation framework to estimate the spatially variant point spread functions (PSFs) of mobile cameras. When input extreme-quality digital images, the proposed framework generates degraded images sharing a common domain with real-world photographs. Supplied with the synthetic image pairs, we design a Field-Of-View shared kernel prediction network (FOV-KPN) to perform spatial-adaptive reconstruction on real degraded photos. Extensive experiments demonstrate that the proposed approach achieves extreme-quality computational imaging and outperforms the state-of-the-art methods. Furthermore, we illustrate that our technique can be integrated into existing postprocessing systems, resulting in significantly improved visual quality. |
---|---|
ISSN: | 2380-7504 |
DOI: | 10.1109/ICCV48922.2021.00263 |