Loading…

Fine-Grained Agent-Based Modeling to Predict Covid-19 Spreading and Effect of Policies in Large-Scale Scenarios

Modeling and forecasting the spread of COVID-19 remains an open problem for several reasons. One of these concerns the difficulty to model a complex system at a high resolution (fine-grained) level at which the spread can be simulated by taking into account individual features. Agent-based modeling...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2022-05, Vol.26 (5), p.2052-2062
Main Authors: Lombardo, Gianfranco, Pellegrino, Mattia, Tomaiuolo, Michele, Cagnoni, Stefano, Mordonini, Monica, Giacobini, Mario, Poggi, Agostino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modeling and forecasting the spread of COVID-19 remains an open problem for several reasons. One of these concerns the difficulty to model a complex system at a high resolution (fine-grained) level at which the spread can be simulated by taking into account individual features. Agent-based modeling usually needs to find an optimal trade-off between the resolution of the simulation and the population size. Indeed, modeling single individuals usually leads to simulations of smaller populations or the use of meta-populations. In this article, we propose a solution to efficiently model the Covid-19 spread in Lombardy, themost populated Italian region with about ten million people. In particular, the model described in this paper is, to the best of our knowledge, the first attempt in literature to model a large population at the single-individual level. To achieve this goal, we propose a framework that implements: i. a scale-free model of the social contacts combining a sociability rate, demographic information, and geographical assumptions; ii. a multi-agent system relying on the actor model and the High-Performance Computing technology to efficiently implement ten million concurrent agents. We simulated the epidemic scenario from January to April 2020 and from August to December 2020, modeling the government's lockdown policies and people's mask-wearing habits. The social modeling approach we propose could be rapidly adapted for modeling future epidemics at their early stage in scenarios where little prior knowledge is available.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2022.3160243