Loading…
ASR-Aware End-to-End Neural Diarization
We present a Conformer-based end-to-end neural diarization (EEND) model that uses both acoustic input and features derived from an automatic speech recognition (ASR) model. Two categories of features are explored: features derived directly from ASR output (phones, position-in-word and word boundarie...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a Conformer-based end-to-end neural diarization (EEND) model that uses both acoustic input and features derived from an automatic speech recognition (ASR) model. Two categories of features are explored: features derived directly from ASR output (phones, position-in-word and word boundaries) and features derived from a lexical speaker change detection model, trained by finetuning a pretrained BERT model on the ASR output. Three modifications to the Conformer-based EEND architecture are proposed to incorporate the features. First, ASR features are concatenated with acoustic features. Second, we propose a new attention mechanism called contextualized self-attention that utilizes ASR features to build robust speaker representations. Finally, multi-task learning is used to train the model to minimize classification loss for the ASR features along with diarization loss. Experiments on the two-speaker English conversations of Switchboard+SRE data sets show that multi-task learning with position-in-word information is the most effective way of utilizing ASR features, reducing the diarization error rate (DER) by 20% relative to the baseline. |
---|---|
ISSN: | 2379-190X |
DOI: | 10.1109/ICASSP43922.2022.9746964 |