Loading…

FitAct: Error Resilient Deep Neural Networks via Fine-Grained Post-Trainable Activation Functions

Deep neural networks (DNNs) are increasingly being deployed in safety-critical systems such as personal healthcare devices and self-driving cars. In such DNN-based systems, error resilience is a top priority since faults in DNN inference could lead to mispredictions and safety hazards. For latency-c...

Full description

Saved in:
Bibliographic Details
Main Authors: Ghavami, Behnam, Sadati, Mani, Fang, Zhenman, Shannon, Lesley
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deep neural networks (DNNs) are increasingly being deployed in safety-critical systems such as personal healthcare devices and self-driving cars. In such DNN-based systems, error resilience is a top priority since faults in DNN inference could lead to mispredictions and safety hazards. For latency-critical DNN inference on resource-constrained edge devices, it is nontrivial to apply conventional redundancy-based fault tolerance techniques. In this paper, we propose FitAct, a low-cost approach to enhance the error resilience of DNNs by deploying fine-grained post-trainable activation functions. The main idea is to precisely bound the activation value of each individual neuron via neuron-wise bounded activation functions, so that it could prevent the fault propagation in the network. To avoid complex DNN model re-training, we propose to decouple the accuracy training and resilience training, and develop a lightweight post-training phase to learn these activation functions with precise bound values. Experimental results on widely used DNN models such as AlexNet, VGG16, and ResNet50 demonstrate that FitAct outperform state-of-the-art studies such as Clip-Act and Ranger in enhancing the DNN error resilience for a wide range of fault rates, while adding manageable runtime and memory space overheads.
ISSN:1558-1101
DOI:10.23919/DATE54114.2022.9774635