Loading…
Delay Analysis of Consensus Communication for Blockchain-Based Applications Using Network Calculus
Blockchain has been witnessed a growing application in mobile communication. The application field ranges from the Internet of Things (IoT), Vehicle to Everything (V2X), Mobile Edge Computing (MEC), etc. The conjunction with blockchain can significantly avoid data tempering and protect user privacy....
Saved in:
Published in: | IEEE wireless communications letters 2022-09, Vol.11 (9), p.1825-1829 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Blockchain has been witnessed a growing application in mobile communication. The application field ranges from the Internet of Things (IoT), Vehicle to Everything (V2X), Mobile Edge Computing (MEC), etc. The conjunction with blockchain can significantly avoid data tempering and protect user privacy. Although blockchain guarantees the security of mobile communication, the operation cost is increasing. The consensus algorithm of blockchain drives multiple untrust parties to keep data consistency, and it generates a large number of communication overheads. In this letter, we focus on the Byzantine Fault Tolerance (BFT) type of consensus and conduct a performance model. By utilizing the deterministic network calculus method, we analyze the delay bound of the Practical Byzantine Fault Tolerance (PBFT) and HotStuff consensus algorithm. The result of the simulation provides a valuable guideline for delay-sensitive blockchain-based applications. |
---|---|
ISSN: | 2162-2337 2162-2345 |
DOI: | 10.1109/LWC.2022.3183197 |