Loading…
On the structure of the multivariable free response
The structure of the free (or zero-input) response of multivariable (MIMO) linear time-invariant systems is investigated. In a behavioral setting, the free response is an autonomous behavior, solution of a homogeneous differential equation. A new closed-form expression of this solution is presented....
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The structure of the free (or zero-input) response of multivariable (MIMO) linear time-invariant systems is investigated. In a behavioral setting, the free response is an autonomous behavior, solution of a homogeneous differential equation. A new closed-form expression of this solution is presented. It is a linear (real) combination of modes associated to the system's pole minimal polynomial. The vector coefficients of the modes belong to the output mode subspaces. These are characterized by a chain of subspace inclusions for each distinct pole. In the special, but relevant case of the pole minimal polynomial having simple roots the closed-form expression simplifies and admits a phasor interpretation. Examples are included to highlight the paper's findings. |
---|---|
ISSN: | 2473-3504 |
DOI: | 10.1109/MED54222.2022.9837199 |