Loading…

Synthetic LiFi Channel Model Using Generative Adversarial Networks

In this paper, we present our research on modeling a synthetic light fidelity (LiFi) channel model that uses a deep learning architecture called generative adversarial networks (GAN). A research in LiFi that requires the generation of many multipath channel impulse responses (CIRs) can benefit from...

Full description

Saved in:
Bibliographic Details
Main Authors: Purwita, Ardimas Andi, Yesilkaya, Anil, Haas, Harald
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present our research on modeling a synthetic light fidelity (LiFi) channel model that uses a deep learning architecture called generative adversarial networks (GAN). A research in LiFi that requires the generation of many multipath channel impulse responses (CIRs) can benefit from our proposed model. For example, future developments of autonomous (deep learning-based) network management systems that use LiFi as one of its high-speed wireless access technologies might require a dataset of many CIRs. In this paper, we use TimeGAN, which is a GAN architecture for time-series data. We will show that modifications are necessary to adopt TimeGAN in our use case. Consequently, synthetic CIRs generated by our model can track long-term dependency of LiFi multipath CIRs. The Kullback-Leibler divergence (KLD) is used in this paper to measure the small difference between samples of synthetic CIRs and real CIRs. Lastly, we also show a simple demonstration of our model that can run on a small virtual machine hosted over the Internet.
ISSN:1938-1883
DOI:10.1109/ICC45855.2022.9838481