Loading…

A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions

Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.1-1
Main Authors: Mahadevkar, Supriya V., Khemani, Bharti, Patil, Shruti, Kotecha, Ketan, Vora, Deepali, Abraham, Ajith, Gabralla, Lubina Abdelkareim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793
cites cdi_FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Mahadevkar, Supriya V.
Khemani, Bharti
Patil, Shruti
Kotecha, Ketan
Vora, Deepali
Abraham, Ajith
Gabralla, Lubina Abdelkareim
description Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algorithm on relevant data. Supervised, Unsupervised, and Reinforcement Learning are the three fundamental categories of machine learning techniques. In this paper, we have discussed the different learning styles used in the field of Computer vision, Deep Learning, Neural networks, and machine learning. Some of the most recent applications of machine learning in computer vision include object identification, object classification, and extracting usable information from images, graphic documents, and videos. Some machine learning techniques frequently include zero-shot learning, active learning, contrastive learning, self-supervised learning, life-long learning, semi-supervised learning, ensemble learning, sequential learning, and multi-view learning used in computer vision until now. There is a lack of systematic reviews about all learning styles. This paper presents literature analysis of how different machine learning styles evolved in the field of Artificial Intelligence (AI) for computer vision. This research examines and evaluates machine learning applications in computer vision and future forecasting. This paper will be helpful for researchers working with learning styles as it gives a deep insight into future directions.
doi_str_mv 10.1109/ACCESS.2022.3209825
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9903420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903420</ieee_id><doaj_id>oai_doaj_org_article_5ecd2b2852d4411896c4d219fc94c7f6</doaj_id><sourcerecordid>2724736104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793</originalsourceid><addsrcrecordid>eNpNUU1P5DAMrVYgLQJ-AZdInDskzldzHBXYRRqExMBKe4rSxIWMhnY2bUH8-81QhPDFlv3es61XFGeMLhij5mJZ11fr9QIowIIDNRXIH8URMGVKLrk6-Fb_LE6HYUNzVLkl9VHxd0nu8TXiG-k7cuv8c-yQrNClLnZPZD2-b3EgsSN1_7KbRkzkTxxihpbkAf1zF_9Nee66QK6ncUpILmNCP2bEcFIctm474OlnPi4er68e6t_l6u7XTb1clV7IaizbSjeyVajBVIECb6UAMB48V0E1TaNCkJo5KRzz3qHy3qPQSgAPFTXa8OPiZtYNvdvYXYovLr3b3kX70ejTk3VpjH6LVqIP0EAlIQjBWGWUFwGYab0RXrcqa53PWrvU7z8b7aafUpfPt6BBaK4YFRnFZ5RP_TAkbL-2Mmr3ltjZEru3xH5akllnMysi4hfDGMoFUP4fsouGVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724736104</pqid></control><display><type>article</type><title>A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions</title><source>IEEE Open Access Journals</source><creator>Mahadevkar, Supriya V. ; Khemani, Bharti ; Patil, Shruti ; Kotecha, Ketan ; Vora, Deepali ; Abraham, Ajith ; Gabralla, Lubina Abdelkareim</creator><creatorcontrib>Mahadevkar, Supriya V. ; Khemani, Bharti ; Patil, Shruti ; Kotecha, Ketan ; Vora, Deepali ; Abraham, Ajith ; Gabralla, Lubina Abdelkareim</creatorcontrib><description>Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algorithm on relevant data. Supervised, Unsupervised, and Reinforcement Learning are the three fundamental categories of machine learning techniques. In this paper, we have discussed the different learning styles used in the field of Computer vision, Deep Learning, Neural networks, and machine learning. Some of the most recent applications of machine learning in computer vision include object identification, object classification, and extracting usable information from images, graphic documents, and videos. Some machine learning techniques frequently include zero-shot learning, active learning, contrastive learning, self-supervised learning, life-long learning, semi-supervised learning, ensemble learning, sequential learning, and multi-view learning used in computer vision until now. There is a lack of systematic reviews about all learning styles. This paper presents literature analysis of how different machine learning styles evolved in the field of Artificial Intelligence (AI) for computer vision. This research examines and evaluates machine learning applications in computer vision and future forecasting. This paper will be helpful for researchers working with learning styles as it gives a deep insight into future directions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3209825</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Cognitive style ; Computer vision ; Data processing ; Deep learning ; Feature extraction ; Image categorization ; Image classification ; Image segmentation ; Literature reviews ; Machine learning ; Machine learning algorithms ; Machine learning techniques ; Multi-task learning ; Neural networks ; Object detection ; Supervised learning ; Zero-shot learning</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793</citedby><cites>FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793</cites><orcidid>0000-0002-6910-6861 ; 0000-0002-4903-1540 ; 0000-0003-2653-3780 ; 0000-0002-0169-6738 ; 0000-0003-3969-9800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903420$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mahadevkar, Supriya V.</creatorcontrib><creatorcontrib>Khemani, Bharti</creatorcontrib><creatorcontrib>Patil, Shruti</creatorcontrib><creatorcontrib>Kotecha, Ketan</creatorcontrib><creatorcontrib>Vora, Deepali</creatorcontrib><creatorcontrib>Abraham, Ajith</creatorcontrib><creatorcontrib>Gabralla, Lubina Abdelkareim</creatorcontrib><title>A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions</title><title>IEEE access</title><addtitle>Access</addtitle><description>Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algorithm on relevant data. Supervised, Unsupervised, and Reinforcement Learning are the three fundamental categories of machine learning techniques. In this paper, we have discussed the different learning styles used in the field of Computer vision, Deep Learning, Neural networks, and machine learning. Some of the most recent applications of machine learning in computer vision include object identification, object classification, and extracting usable information from images, graphic documents, and videos. Some machine learning techniques frequently include zero-shot learning, active learning, contrastive learning, self-supervised learning, life-long learning, semi-supervised learning, ensemble learning, sequential learning, and multi-view learning used in computer vision until now. There is a lack of systematic reviews about all learning styles. This paper presents literature analysis of how different machine learning styles evolved in the field of Artificial Intelligence (AI) for computer vision. This research examines and evaluates machine learning applications in computer vision and future forecasting. This paper will be helpful for researchers working with learning styles as it gives a deep insight into future directions.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cognitive style</subject><subject>Computer vision</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image categorization</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Machine learning techniques</subject><subject>Multi-task learning</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Supervised learning</subject><subject>Zero-shot learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P5DAMrVYgLQJ-AZdInDskzldzHBXYRRqExMBKe4rSxIWMhnY2bUH8-81QhPDFlv3es61XFGeMLhij5mJZ11fr9QIowIIDNRXIH8URMGVKLrk6-Fb_LE6HYUNzVLkl9VHxd0nu8TXiG-k7cuv8c-yQrNClLnZPZD2-b3EgsSN1_7KbRkzkTxxihpbkAf1zF_9Nee66QK6ncUpILmNCP2bEcFIctm474OlnPi4er68e6t_l6u7XTb1clV7IaizbSjeyVajBVIECb6UAMB48V0E1TaNCkJo5KRzz3qHy3qPQSgAPFTXa8OPiZtYNvdvYXYovLr3b3kX70ejTk3VpjH6LVqIP0EAlIQjBWGWUFwGYab0RXrcqa53PWrvU7z8b7aafUpfPt6BBaK4YFRnFZ5RP_TAkbL-2Mmr3ltjZEru3xH5akllnMysi4hfDGMoFUP4fsouGVA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Mahadevkar, Supriya V.</creator><creator>Khemani, Bharti</creator><creator>Patil, Shruti</creator><creator>Kotecha, Ketan</creator><creator>Vora, Deepali</creator><creator>Abraham, Ajith</creator><creator>Gabralla, Lubina Abdelkareim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6910-6861</orcidid><orcidid>https://orcid.org/0000-0002-4903-1540</orcidid><orcidid>https://orcid.org/0000-0003-2653-3780</orcidid><orcidid>https://orcid.org/0000-0002-0169-6738</orcidid><orcidid>https://orcid.org/0000-0003-3969-9800</orcidid></search><sort><creationdate>2022</creationdate><title>A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions</title><author>Mahadevkar, Supriya V. ; Khemani, Bharti ; Patil, Shruti ; Kotecha, Ketan ; Vora, Deepali ; Abraham, Ajith ; Gabralla, Lubina Abdelkareim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cognitive style</topic><topic>Computer vision</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image categorization</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Machine learning techniques</topic><topic>Multi-task learning</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Supervised learning</topic><topic>Zero-shot learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahadevkar, Supriya V.</creatorcontrib><creatorcontrib>Khemani, Bharti</creatorcontrib><creatorcontrib>Patil, Shruti</creatorcontrib><creatorcontrib>Kotecha, Ketan</creatorcontrib><creatorcontrib>Vora, Deepali</creatorcontrib><creatorcontrib>Abraham, Ajith</creatorcontrib><creatorcontrib>Gabralla, Lubina Abdelkareim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahadevkar, Supriya V.</au><au>Khemani, Bharti</au><au>Patil, Shruti</au><au>Kotecha, Ketan</au><au>Vora, Deepali</au><au>Abraham, Ajith</au><au>Gabralla, Lubina Abdelkareim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algorithm on relevant data. Supervised, Unsupervised, and Reinforcement Learning are the three fundamental categories of machine learning techniques. In this paper, we have discussed the different learning styles used in the field of Computer vision, Deep Learning, Neural networks, and machine learning. Some of the most recent applications of machine learning in computer vision include object identification, object classification, and extracting usable information from images, graphic documents, and videos. Some machine learning techniques frequently include zero-shot learning, active learning, contrastive learning, self-supervised learning, life-long learning, semi-supervised learning, ensemble learning, sequential learning, and multi-view learning used in computer vision until now. There is a lack of systematic reviews about all learning styles. This paper presents literature analysis of how different machine learning styles evolved in the field of Artificial Intelligence (AI) for computer vision. This research examines and evaluates machine learning applications in computer vision and future forecasting. This paper will be helpful for researchers working with learning styles as it gives a deep insight into future directions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3209825</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6910-6861</orcidid><orcidid>https://orcid.org/0000-0002-4903-1540</orcidid><orcidid>https://orcid.org/0000-0003-2653-3780</orcidid><orcidid>https://orcid.org/0000-0002-0169-6738</orcidid><orcidid>https://orcid.org/0000-0003-3969-9800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9903420
source IEEE Open Access Journals
subjects Algorithms
Artificial intelligence
Cognitive style
Computer vision
Data processing
Deep learning
Feature extraction
Image categorization
Image classification
Image segmentation
Literature reviews
Machine learning
Machine learning algorithms
Machine learning techniques
Multi-task learning
Neural networks
Object detection
Supervised learning
Zero-shot learning
title A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20on%20Machine%20Learning%20Styles%20in%20Computer%20Vision%20-%20Techniques%20and%20Future%20Directions&rft.jtitle=IEEE%20access&rft.au=Mahadevkar,%20Supriya%20V.&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3209825&rft_dat=%3Cproquest_ieee_%3E2724736104%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724736104&rft_id=info:pmid/&rft_ieee_id=9903420&rfr_iscdi=true