Loading…
A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions
Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algor...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Mahadevkar, Supriya V. Khemani, Bharti Patil, Shruti Kotecha, Ketan Vora, Deepali Abraham, Ajith Gabralla, Lubina Abdelkareim |
description | Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algorithm on relevant data. Supervised, Unsupervised, and Reinforcement Learning are the three fundamental categories of machine learning techniques. In this paper, we have discussed the different learning styles used in the field of Computer vision, Deep Learning, Neural networks, and machine learning. Some of the most recent applications of machine learning in computer vision include object identification, object classification, and extracting usable information from images, graphic documents, and videos. Some machine learning techniques frequently include zero-shot learning, active learning, contrastive learning, self-supervised learning, life-long learning, semi-supervised learning, ensemble learning, sequential learning, and multi-view learning used in computer vision until now. There is a lack of systematic reviews about all learning styles. This paper presents literature analysis of how different machine learning styles evolved in the field of Artificial Intelligence (AI) for computer vision. This research examines and evaluates machine learning applications in computer vision and future forecasting. This paper will be helpful for researchers working with learning styles as it gives a deep insight into future directions. |
doi_str_mv | 10.1109/ACCESS.2022.3209825 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9903420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903420</ieee_id><doaj_id>oai_doaj_org_article_5ecd2b2852d4411896c4d219fc94c7f6</doaj_id><sourcerecordid>2724736104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793</originalsourceid><addsrcrecordid>eNpNUU1P5DAMrVYgLQJ-AZdInDskzldzHBXYRRqExMBKe4rSxIWMhnY2bUH8-81QhPDFlv3es61XFGeMLhij5mJZ11fr9QIowIIDNRXIH8URMGVKLrk6-Fb_LE6HYUNzVLkl9VHxd0nu8TXiG-k7cuv8c-yQrNClLnZPZD2-b3EgsSN1_7KbRkzkTxxihpbkAf1zF_9Nee66QK6ncUpILmNCP2bEcFIctm474OlnPi4er68e6t_l6u7XTb1clV7IaizbSjeyVajBVIECb6UAMB48V0E1TaNCkJo5KRzz3qHy3qPQSgAPFTXa8OPiZtYNvdvYXYovLr3b3kX70ejTk3VpjH6LVqIP0EAlIQjBWGWUFwGYab0RXrcqa53PWrvU7z8b7aafUpfPt6BBaK4YFRnFZ5RP_TAkbL-2Mmr3ltjZEru3xH5akllnMysi4hfDGMoFUP4fsouGVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724736104</pqid></control><display><type>article</type><title>A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions</title><source>IEEE Open Access Journals</source><creator>Mahadevkar, Supriya V. ; Khemani, Bharti ; Patil, Shruti ; Kotecha, Ketan ; Vora, Deepali ; Abraham, Ajith ; Gabralla, Lubina Abdelkareim</creator><creatorcontrib>Mahadevkar, Supriya V. ; Khemani, Bharti ; Patil, Shruti ; Kotecha, Ketan ; Vora, Deepali ; Abraham, Ajith ; Gabralla, Lubina Abdelkareim</creatorcontrib><description>Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algorithm on relevant data. Supervised, Unsupervised, and Reinforcement Learning are the three fundamental categories of machine learning techniques. In this paper, we have discussed the different learning styles used in the field of Computer vision, Deep Learning, Neural networks, and machine learning. Some of the most recent applications of machine learning in computer vision include object identification, object classification, and extracting usable information from images, graphic documents, and videos. Some machine learning techniques frequently include zero-shot learning, active learning, contrastive learning, self-supervised learning, life-long learning, semi-supervised learning, ensemble learning, sequential learning, and multi-view learning used in computer vision until now. There is a lack of systematic reviews about all learning styles. This paper presents literature analysis of how different machine learning styles evolved in the field of Artificial Intelligence (AI) for computer vision. This research examines and evaluates machine learning applications in computer vision and future forecasting. This paper will be helpful for researchers working with learning styles as it gives a deep insight into future directions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3209825</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Cognitive style ; Computer vision ; Data processing ; Deep learning ; Feature extraction ; Image categorization ; Image classification ; Image segmentation ; Literature reviews ; Machine learning ; Machine learning algorithms ; Machine learning techniques ; Multi-task learning ; Neural networks ; Object detection ; Supervised learning ; Zero-shot learning</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793</citedby><cites>FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793</cites><orcidid>0000-0002-6910-6861 ; 0000-0002-4903-1540 ; 0000-0003-2653-3780 ; 0000-0002-0169-6738 ; 0000-0003-3969-9800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903420$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mahadevkar, Supriya V.</creatorcontrib><creatorcontrib>Khemani, Bharti</creatorcontrib><creatorcontrib>Patil, Shruti</creatorcontrib><creatorcontrib>Kotecha, Ketan</creatorcontrib><creatorcontrib>Vora, Deepali</creatorcontrib><creatorcontrib>Abraham, Ajith</creatorcontrib><creatorcontrib>Gabralla, Lubina Abdelkareim</creatorcontrib><title>A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions</title><title>IEEE access</title><addtitle>Access</addtitle><description>Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algorithm on relevant data. Supervised, Unsupervised, and Reinforcement Learning are the three fundamental categories of machine learning techniques. In this paper, we have discussed the different learning styles used in the field of Computer vision, Deep Learning, Neural networks, and machine learning. Some of the most recent applications of machine learning in computer vision include object identification, object classification, and extracting usable information from images, graphic documents, and videos. Some machine learning techniques frequently include zero-shot learning, active learning, contrastive learning, self-supervised learning, life-long learning, semi-supervised learning, ensemble learning, sequential learning, and multi-view learning used in computer vision until now. There is a lack of systematic reviews about all learning styles. This paper presents literature analysis of how different machine learning styles evolved in the field of Artificial Intelligence (AI) for computer vision. This research examines and evaluates machine learning applications in computer vision and future forecasting. This paper will be helpful for researchers working with learning styles as it gives a deep insight into future directions.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cognitive style</subject><subject>Computer vision</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image categorization</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Machine learning techniques</subject><subject>Multi-task learning</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Supervised learning</subject><subject>Zero-shot learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P5DAMrVYgLQJ-AZdInDskzldzHBXYRRqExMBKe4rSxIWMhnY2bUH8-81QhPDFlv3es61XFGeMLhij5mJZ11fr9QIowIIDNRXIH8URMGVKLrk6-Fb_LE6HYUNzVLkl9VHxd0nu8TXiG-k7cuv8c-yQrNClLnZPZD2-b3EgsSN1_7KbRkzkTxxihpbkAf1zF_9Nee66QK6ncUpILmNCP2bEcFIctm474OlnPi4er68e6t_l6u7XTb1clV7IaizbSjeyVajBVIECb6UAMB48V0E1TaNCkJo5KRzz3qHy3qPQSgAPFTXa8OPiZtYNvdvYXYovLr3b3kX70ejTk3VpjH6LVqIP0EAlIQjBWGWUFwGYab0RXrcqa53PWrvU7z8b7aafUpfPt6BBaK4YFRnFZ5RP_TAkbL-2Mmr3ltjZEru3xH5akllnMysi4hfDGMoFUP4fsouGVA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Mahadevkar, Supriya V.</creator><creator>Khemani, Bharti</creator><creator>Patil, Shruti</creator><creator>Kotecha, Ketan</creator><creator>Vora, Deepali</creator><creator>Abraham, Ajith</creator><creator>Gabralla, Lubina Abdelkareim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6910-6861</orcidid><orcidid>https://orcid.org/0000-0002-4903-1540</orcidid><orcidid>https://orcid.org/0000-0003-2653-3780</orcidid><orcidid>https://orcid.org/0000-0002-0169-6738</orcidid><orcidid>https://orcid.org/0000-0003-3969-9800</orcidid></search><sort><creationdate>2022</creationdate><title>A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions</title><author>Mahadevkar, Supriya V. ; Khemani, Bharti ; Patil, Shruti ; Kotecha, Ketan ; Vora, Deepali ; Abraham, Ajith ; Gabralla, Lubina Abdelkareim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cognitive style</topic><topic>Computer vision</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image categorization</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Machine learning techniques</topic><topic>Multi-task learning</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Supervised learning</topic><topic>Zero-shot learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahadevkar, Supriya V.</creatorcontrib><creatorcontrib>Khemani, Bharti</creatorcontrib><creatorcontrib>Patil, Shruti</creatorcontrib><creatorcontrib>Kotecha, Ketan</creatorcontrib><creatorcontrib>Vora, Deepali</creatorcontrib><creatorcontrib>Abraham, Ajith</creatorcontrib><creatorcontrib>Gabralla, Lubina Abdelkareim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahadevkar, Supriya V.</au><au>Khemani, Bharti</au><au>Patil, Shruti</au><au>Kotecha, Ketan</au><au>Vora, Deepali</au><au>Abraham, Ajith</au><au>Gabralla, Lubina Abdelkareim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algorithm on relevant data. Supervised, Unsupervised, and Reinforcement Learning are the three fundamental categories of machine learning techniques. In this paper, we have discussed the different learning styles used in the field of Computer vision, Deep Learning, Neural networks, and machine learning. Some of the most recent applications of machine learning in computer vision include object identification, object classification, and extracting usable information from images, graphic documents, and videos. Some machine learning techniques frequently include zero-shot learning, active learning, contrastive learning, self-supervised learning, life-long learning, semi-supervised learning, ensemble learning, sequential learning, and multi-view learning used in computer vision until now. There is a lack of systematic reviews about all learning styles. This paper presents literature analysis of how different machine learning styles evolved in the field of Artificial Intelligence (AI) for computer vision. This research examines and evaluates machine learning applications in computer vision and future forecasting. This paper will be helpful for researchers working with learning styles as it gives a deep insight into future directions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3209825</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6910-6861</orcidid><orcidid>https://orcid.org/0000-0002-4903-1540</orcidid><orcidid>https://orcid.org/0000-0003-2653-3780</orcidid><orcidid>https://orcid.org/0000-0002-0169-6738</orcidid><orcidid>https://orcid.org/0000-0003-3969-9800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9903420 |
source | IEEE Open Access Journals |
subjects | Algorithms Artificial intelligence Cognitive style Computer vision Data processing Deep learning Feature extraction Image categorization Image classification Image segmentation Literature reviews Machine learning Machine learning algorithms Machine learning techniques Multi-task learning Neural networks Object detection Supervised learning Zero-shot learning |
title | A Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20on%20Machine%20Learning%20Styles%20in%20Computer%20Vision%20-%20Techniques%20and%20Future%20Directions&rft.jtitle=IEEE%20access&rft.au=Mahadevkar,%20Supriya%20V.&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3209825&rft_dat=%3Cproquest_ieee_%3E2724736104%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-f87b5f6e7298d023f54229c2c36d6bbb6dd571a54a1ccae6ccce476423d809793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724736104&rft_id=info:pmid/&rft_ieee_id=9903420&rfr_iscdi=true |