Loading…
Preparing an incompressible-flow fluid dynamics code for exascale-class wind energy simulations
The U.S. Department of Energy has identified exascale-class wind farm simulation as critical to wind energy scientific discovery. A primary objective of the ExaWind project is to build high-performance, predictive computational fluid dynamics (CFD) tools that satisfy these modeling needs. GPU accele...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The U.S. Department of Energy has identified exascale-class wind farm simulation as critical to wind energy scientific discovery. A primary objective of the ExaWind project is to build high-performance, predictive computational fluid dynamics (CFD) tools that satisfy these modeling needs. GPU accelerators will serve as the computational thoroughbreds of next-generation, exascale-class supercomputers. Here, we report on our efforts in preparing the ExaWind unstructured mesh solver, Nalu-Wind, for exascale-class machines. For computing at this scale, a simple port of the incompressible-flow algorithms to GPUs is insufficient. To achieve high performance, one needs novel algorithms that are application aware, memory efficient, and optimized for the latest-generation GPU devices. The result of our efforts are unstructured-mesh simulations of wind turbines that can effectively leverage thousands of GPUs. In particular, we demonstrate a first-of-its-kind, incompressible-flow simulation using Algebraic Multigrid solvers that strong scales to more than 4000 GPUs on the Summit supercomputer. |
---|---|
ISSN: | 2167-4337 |
DOI: | 10.1145/3458817.3476185 |