Loading…
Adaptive Upgrade of Client Resources for Improving the Quality of Federated Learning Model
Conventional systems are usually constrained to store data in a centralized location. This restriction has either precluded sensitive data from being shared or put its privacy on the line. Alternatively, Federated Learning (FL) has emerged as a promising privacy-preserving paradigm for exchanging mo...
Saved in:
Published in: | IEEE internet of things journal 2023-03, Vol.10 (5), p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional systems are usually constrained to store data in a centralized location. This restriction has either precluded sensitive data from being shared or put its privacy on the line. Alternatively, Federated Learning (FL) has emerged as a promising privacy-preserving paradigm for exchanging model parameters instead of private data of Internet of Things (IoT) devices known as clients. FL trains a global model by communicating local models generated by selected clients throughout many communication rounds until ensuring high learning performance. In these settings, the FL performance highly depends on selecting the best available clients. This process is strongly related to the quality of their models and their training data. Such selection-based schemes have not been explored yet, particularly regarding participating clients having high-quality data yet with limited resources. To address these challenges, we propose in this paper FedAUR, a novel approach for adaptive upgrade of clients resources in FL. We first introduce a method to measure how a locally generated model affects and improves the global model if selected for aggregation without revealing raw data. Next, based on the significance of each client parameters and the resources of their devices, we design a selection scheme that manages and distributes available resources on the server among the appropriate subset of clients. This client selection and resource allocation problem is thus formulated as an optimization problem, where the purpose is to discover and train in each round the maximum number of samples with the highest quality in order to target the desired performance. Moreover, we present a Kubernetes-based prototype that we implemented to evaluate the performance of the proposed approach. |
---|---|
ISSN: | 2327-4662 2327-4662 |
DOI: | 10.1109/JIOT.2022.3218755 |