Loading…

Harmonic admittance and dispersion equations-the theorem [SAWs in periodic electrode arrays]

The harmonic admittance is known as a powerful tool for analyzing the excitation and propagation of surface acoustic waves (SAWs) in periodic electrode arrays. In particular, the dispersion relationships for open- and short-circuited systems are indicated, respectively, by the zeros and poles of the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2002-04, Vol.49 (4), p.528-534
Main Authors: Plessky, V.P., Biryukov, S.V., Koskela, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The harmonic admittance is known as a powerful tool for analyzing the excitation and propagation of surface acoustic waves (SAWs) in periodic electrode arrays. In particular, the dispersion relationships for open- and short-circuited systems are indicated, respectively, by the zeros and poles of the harmonic admittance. Here, we show that a strict reverse relationship also exists: the harmonic admittance of a periodic system of electrodes may always be expressed as the ratio of two determinants, which have been specifically constructed to describe the eigenmodes of the open- and short-circuited systems. There is no need to solve these equations to find the admittance. The existence of a connection between the excitation and propagation problems was recognized within the coupling-of-modes theory by Chen and Haus (1985) and was recently used to model surface transverse waves by Koskela et al. (1998), but a rigorous mathematical proof was only found later by Biryukov (2000). Here, we reproduce this theorem in detail, give some examples of calculations based on this theorem, and compare the results with measured admittance curves.
ISSN:0885-3010
1525-8955
DOI:10.1109/58.996573