Loading…
SACA: System-level Analog CIM Accelerators Simulation Framework: Accurate Simulation of Non-Ideal Components
Always-ON accelerators running TinyML applications are strongly limited by the memory and computation resources available in edge devices. Compute-In-Memory (CIM) architectures based on non-volatile memories (NVM) promise to bring the required compute and memory demands of Deep Neural Networks (DNN)...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Always-ON accelerators running TinyML applications are strongly limited by the memory and computation resources available in edge devices. Compute-In-Memory (CIM) architectures based on non-volatile memories (NVM) promise to bring the required compute and memory demands of Deep Neural Networks (DNN) to the edge while consuming extremely low power. However, their system-level design is constrained by the device and periphery noise which strongly impacts and compromises the accuracy of the DNN workload. In this paper SACA, a framework for simulating host & CIM accelerator systems, is presented. The simulator quantifies the system reliability by taking into account device-level non-idealities. The accuracy of two representative TinyML workloads is analyzed based on the crossbar characteristics -NVM technology, crossbar size, periphery characteristics. To demonstrate the capabilities of SACA, extensive experiments are carried out. We have characterized a convolutional network tackling CIFAR10 image classification and a fully connected network performing Human Activity Recognition. The results lead to optimal energy/performance/accuracy profiles, while the overall analysis highlights the dramatic effects of IR-drop on larger crossbars, degrading the system's accuracy and compromising its reliability. |
---|---|
ISSN: | 2640-5563 |
DOI: | 10.1109/DCIS55711.2022.9970112 |