Loading…
A sequential failure detection approach and the identification of failure parameters
This paper is concerned with the problem of a failure diagnosis for a discrete-time system with parametric failure, in which the occurrence time and mode of parametric failure cannot be estimated in advance. The failure diagnosis system which is proposed consists of three parts : (i) a normal mode f...
Saved in:
Published in: | International journal of systems science 1979-07, Vol.10 (7), p.827-836 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with the problem of a failure diagnosis for a discrete-time system with parametric failure, in which the occurrence time and mode of parametric failure cannot be estimated in advance. The failure diagnosis system which is proposed consists of three parts : (i) a normal mode filter, (ii) a detector for anomaly states, and (iii) an adaptive extended Kalman filter. The normal mode filter is called the optimal Kalman filter and transports the information of its innovation sequence to the detector. The detector which is based on the SPRT approach detects anomaly states affected by the parametric failure. The adaptive extended Kalman filter estimates simultaneously system parameters and the states under the failure mode. The adaptive procedure is directed by increasing the calculated covariance on the basis of hypothesis tests for the estimation errors of unknown parameters. Numerical results for a simple plant model illustrate the effectiveness of the proposed failure diagnosis system. |
---|---|
ISSN: | 0020-7721 1464-5319 |
DOI: | 10.1080/00207727908941623 |