Loading…

Detection of Disbonds in Multi-layer Structures by Laser-Based Ultrasonic Technique

Adhesively bonded multi-layer structures are frequently used, mostly in the aerospace industry, for their structural efficiency. Nondestructive evaluation of bond integrity in these types of structures, both after manufacturing and for periodic inspection during service, is extremely important. A la...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of adhesion 2008-12, Vol.84 (10), p.811-829
Main Authors: Cerniglia, D., Montinaro, N., Nigrelli, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adhesively bonded multi-layer structures are frequently used, mostly in the aerospace industry, for their structural efficiency. Nondestructive evaluation of bond integrity in these types of structures, both after manufacturing and for periodic inspection during service, is extremely important. A laser-based ultrasonic technique has been evaluated for non-contact detection of disbonds in aluminum multi-layer structures. Two configurations have been used to detect disbonded areas: pitch-catch with unidirectional guided wave scan and through-transmission with bidirectional scan. Guided wave scanning was done with a laser line source and air-coupled transducer sensing at 500 kHz, 1 MHz, and 2 MHz. Signals showed attenuation of the main frequency component and frequency shift on disbonded areas, whereas, a regular and standard waveform is seen outside disbonds. In through-transmission the longitudinal wave at normal incidence was monitored with a 1 MHz probe. One sample showed, besides the introduced inserts, other disbonded areas. After the ultrasonic measurements the sample was cut to visually check adhesive and interfaces. The guided wave pitch-catch scan allowed fast inspection and quick indication of disbonded zones, while the through-transmission C-Scan provided better definition of defects but was slower and required access from both sides of the test part.
ISSN:0021-8464
1545-5823
1563-518X
DOI:10.1080/00218460802443295