Loading…

Effect of short and long range forces on the structure of water. II. Orientational ordering and the dielectric constant

The effects of short and long range interactions on the structure of water, both spatial and orientational, has been studied in detail by computing the full pair correlation function, site-site correlation functions, 2-dimensional site-site correlation functions in the (r OO , r OH ) and (r OO , r H...

Full description

Saved in:
Bibliographic Details
Published in:Molecular physics 2000-10, Vol.98 (19), p.1505-1520
Main Authors: KOLAFA, JIŘÍ, NEZBEDA, IVO
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of short and long range interactions on the structure of water, both spatial and orientational, has been studied in detail by computing the full pair correlation function, site-site correlation functions, 2-dimensional site-site correlation functions in the (r OO , r OH ) and (r OO , r HH ) planes, dipole-dipole correlation function, radial Kirkwood g factor, and the dielectric constant. Two model potentials, the T1P4P and ST2, and their short range versions have been considered at ambient and elevated temperatures and under supercritical conditions. The Ewald summation under different conditions has been used to investigate also their effect on results. An analysis of the results shows that although all site-site correlation functions for the short and long range systems are similar, the orientational ordering in systems of different range may be considerably different, this evidence being provided mainly by the dipole-dipole correlation function and the radial Kirkwood factor. The orientational ordering is only short range in long range systems, whereas in short range systems the hydrogen bonding gives rise to a damped long range regular pattern of alignment. Nonetheless, the resulting dielectric constants for the short and long range systems coincide within the combined error bars. All findings are more pronounced at low temperatures but otherwise they are only marginally temperature and density dependent.
ISSN:0026-8976
1362-3028
DOI:10.1080/00268970009483356