Loading…
Assessing the bias of maximum likelihood estimates of contaminated garch models
It is well known that Gaussian maximum likelihood estimates of time series models are not robust. In this paper we prove this is also the case for the Generalized Autoregressive Conditional Heteroscedastic (GARCH) models. By expressing the Gaussian maximum likelihood estimates as Ψ estimates and by...
Saved in:
Published in: | Journal of statistical computation and simulation 2000-11, Vol.67 (4), p.359-376 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well known that Gaussian maximum likelihood estimates of time series models are not robust. In this paper we prove this is also the case for the Generalized Autoregressive Conditional Heteroscedastic (GARCH) models. By expressing the Gaussian maximum likelihood estimates as Ψ estimates and by assuming the existence of a contaminated process, we prove they possess zero breakdown point and unbounded influence curves. By simulating GARCH processes under several proportions of contaminations we assess how much biased the maximum likelihood estimates may become and compare these results to a robust alternative. The t-student maximum likelihood estimates of GARCH models are also considered. |
---|---|
ISSN: | 0094-9655 1563-5163 |
DOI: | 10.1080/00949650008812051 |