Loading…
Molecular dynamic studies on materials under laser shocks
Molecular dynamic (MD) simulations offer a powerful means of understanding the microscopic characteristics of shock-propagation through solids and fluids, especially for the short spatial and temporal scales relevant to laser-driven shocks. First-principles molecular dynamics can be directly compare...
Saved in:
Published in: | Phase transitions 2009-02, Vol.82 (2), p.167-190 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molecular dynamic (MD) simulations offer a powerful means of understanding the microscopic characteristics of shock-propagation through solids and fluids, especially for the short spatial and temporal scales relevant to laser-driven shocks. First-principles molecular dynamics can be directly compared with time-resolved experimental measurements, and methods based on empirical (embedded-atom) potentials fitted to first-principles quantum-mechanical calculations are effective for MD simulations of shock propagation through many millions of atoms. In comparison, thermodynamic approaches based on free-energy considerations do not provide detailed information about mechanical-relaxation or phase-transformation processes within the shock front. We illustrate these ideas by way of embedded-atom simulations of shock-wave propagation through copper crystals of different orientation. |
---|---|
ISSN: | 0141-1594 1029-0338 |
DOI: | 10.1080/01411590802513748 |