Loading…

Molecular dynamic studies on materials under laser shocks

Molecular dynamic (MD) simulations offer a powerful means of understanding the microscopic characteristics of shock-propagation through solids and fluids, especially for the short spatial and temporal scales relevant to laser-driven shocks. First-principles molecular dynamics can be directly compare...

Full description

Saved in:
Bibliographic Details
Published in:Phase transitions 2009-02, Vol.82 (2), p.167-190
Main Authors: Godwal, B.K., Verma, A.K., Jeanloz, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular dynamic (MD) simulations offer a powerful means of understanding the microscopic characteristics of shock-propagation through solids and fluids, especially for the short spatial and temporal scales relevant to laser-driven shocks. First-principles molecular dynamics can be directly compared with time-resolved experimental measurements, and methods based on empirical (embedded-atom) potentials fitted to first-principles quantum-mechanical calculations are effective for MD simulations of shock propagation through many millions of atoms. In comparison, thermodynamic approaches based on free-energy considerations do not provide detailed information about mechanical-relaxation or phase-transformation processes within the shock front. We illustrate these ideas by way of embedded-atom simulations of shock-wave propagation through copper crystals of different orientation.
ISSN:0141-1594
1029-0338
DOI:10.1080/01411590802513748