Loading…
FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS
A quasi-static uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative of order α is proposed. Because the heat conduction equation in the case 1≤α≤2 interpolates the parabolic equation (α = 1) and the wave equation (α = 2), the proposed theory in...
Saved in:
Published in: | Journal of thermal stresses 2004-12, Vol.28 (1), p.83-102 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A quasi-static uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative of order α is proposed. Because the heat conduction equation in the case 1≤α≤2 interpolates the parabolic equation (α = 1) and the wave equation (α = 2), the proposed theory interpolates a classical thermoelasticity and a thermoelasticity without energy dissipation introduced by Green and Naghdi. The Caputo fractional derivative is used. The stresses corresponding to the fundamental solutions of a Cauchy problem for the fractional heat conduction equation are found in one-dimensional and two-dimensional cases. |
---|---|
ISSN: | 0149-5739 1521-074X |
DOI: | 10.1080/014957390523741 |