Loading…

FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS

A quasi-static uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative of order α is proposed. Because the heat conduction equation in the case 1≤α≤2 interpolates the parabolic equation (α = 1) and the wave equation (α = 2), the proposed theory in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal stresses 2004-12, Vol.28 (1), p.83-102
Main Author: Povstenko, Y. Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-fea1d24b1f6ecf266a31e1dfc3e8ec2441b80b6f03d8a4712c52489090f1a88a3
cites cdi_FETCH-LOGICAL-c435t-fea1d24b1f6ecf266a31e1dfc3e8ec2441b80b6f03d8a4712c52489090f1a88a3
container_end_page 102
container_issue 1
container_start_page 83
container_title Journal of thermal stresses
container_volume 28
creator Povstenko, Y. Z.
description A quasi-static uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative of order α is proposed. Because the heat conduction equation in the case 1≤α≤2 interpolates the parabolic equation (α = 1) and the wave equation (α = 2), the proposed theory interpolates a classical thermoelasticity and a thermoelasticity without energy dissipation introduced by Green and Naghdi. The Caputo fractional derivative is used. The stresses corresponding to the fundamental solutions of a Cauchy problem for the fractional heat conduction equation are found in one-dimensional and two-dimensional cases.
doi_str_mv 10.1080/014957390523741
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_014957390523741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29252514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-fea1d24b1f6ecf266a31e1dfc3e8ec2441b80b6f03d8a4712c52489090f1a88a3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EEqUws2ZiC_UzcdisNKWVSiOaVGKzXMeWgtKm2KlK_z19MFVCTPfqfufc4QPgEcFnBDkcQEQTFpMEMkxiiq5ADzGMQhjTj2vQO6bhMb4Fd95_QggjzkkPiNFcpOUkn4lpMM5EGaT5bLg4XYLsfSFOi5gNA1EUeToRZTYMynE2fzvwRTnPiuIe3FjVePPwO_tgMcrKdBxO89dJKqahpoR1oTUKVZgukY2MtjiKFEEGVVYTw43GlKIlh8vIQlJxRWOENcOUJzCBFinOFemDp_PfjWu_tsZ3clV7bZpGrU279RInmGGG6AEcnEHtWu-dsXLj6pVye4mgPFYlL6o6GC9no17b1q3UrnVNJTu1b1pnnVrr2kvyt8z-lS8c2X135AdaInmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29252514</pqid></control><display><type>article</type><title>FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS</title><source>Taylor and Francis Science and Technology Collection</source><creator>Povstenko, Y. Z.</creator><creatorcontrib>Povstenko, Y. Z.</creatorcontrib><description>A quasi-static uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative of order α is proposed. Because the heat conduction equation in the case 1≤α≤2 interpolates the parabolic equation (α = 1) and the wave equation (α = 2), the proposed theory interpolates a classical thermoelasticity and a thermoelasticity without energy dissipation introduced by Green and Naghdi. The Caputo fractional derivative is used. The stresses corresponding to the fundamental solutions of a Cauchy problem for the fractional heat conduction equation are found in one-dimensional and two-dimensional cases.</description><identifier>ISSN: 0149-5739</identifier><identifier>EISSN: 1521-074X</identifier><identifier>DOI: 10.1080/014957390523741</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>fractional calculus ; heat wave equation ; non-Fourier heat conduction ; thermal stresses</subject><ispartof>Journal of thermal stresses, 2004-12, Vol.28 (1), p.83-102</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-fea1d24b1f6ecf266a31e1dfc3e8ec2441b80b6f03d8a4712c52489090f1a88a3</citedby><cites>FETCH-LOGICAL-c435t-fea1d24b1f6ecf266a31e1dfc3e8ec2441b80b6f03d8a4712c52489090f1a88a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Povstenko, Y. Z.</creatorcontrib><title>FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS</title><title>Journal of thermal stresses</title><description>A quasi-static uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative of order α is proposed. Because the heat conduction equation in the case 1≤α≤2 interpolates the parabolic equation (α = 1) and the wave equation (α = 2), the proposed theory interpolates a classical thermoelasticity and a thermoelasticity without energy dissipation introduced by Green and Naghdi. The Caputo fractional derivative is used. The stresses corresponding to the fundamental solutions of a Cauchy problem for the fractional heat conduction equation are found in one-dimensional and two-dimensional cases.</description><subject>fractional calculus</subject><subject>heat wave equation</subject><subject>non-Fourier heat conduction</subject><subject>thermal stresses</subject><issn>0149-5739</issn><issn>1521-074X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EEqUws2ZiC_UzcdisNKWVSiOaVGKzXMeWgtKm2KlK_z19MFVCTPfqfufc4QPgEcFnBDkcQEQTFpMEMkxiiq5ADzGMQhjTj2vQO6bhMb4Fd95_QggjzkkPiNFcpOUkn4lpMM5EGaT5bLg4XYLsfSFOi5gNA1EUeToRZTYMynE2fzvwRTnPiuIe3FjVePPwO_tgMcrKdBxO89dJKqahpoR1oTUKVZgukY2MtjiKFEEGVVYTw43GlKIlh8vIQlJxRWOENcOUJzCBFinOFemDp_PfjWu_tsZ3clV7bZpGrU279RInmGGG6AEcnEHtWu-dsXLj6pVye4mgPFYlL6o6GC9no17b1q3UrnVNJTu1b1pnnVrr2kvyt8z-lS8c2X135AdaInmY</recordid><startdate>20041215</startdate><enddate>20041215</enddate><creator>Povstenko, Y. Z.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20041215</creationdate><title>FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS</title><author>Povstenko, Y. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-fea1d24b1f6ecf266a31e1dfc3e8ec2441b80b6f03d8a4712c52489090f1a88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>fractional calculus</topic><topic>heat wave equation</topic><topic>non-Fourier heat conduction</topic><topic>thermal stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Povstenko, Y. Z.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of thermal stresses</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Povstenko, Y. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS</atitle><jtitle>Journal of thermal stresses</jtitle><date>2004-12-15</date><risdate>2004</risdate><volume>28</volume><issue>1</issue><spage>83</spage><epage>102</epage><pages>83-102</pages><issn>0149-5739</issn><eissn>1521-074X</eissn><abstract>A quasi-static uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative of order α is proposed. Because the heat conduction equation in the case 1≤α≤2 interpolates the parabolic equation (α = 1) and the wave equation (α = 2), the proposed theory interpolates a classical thermoelasticity and a thermoelasticity without energy dissipation introduced by Green and Naghdi. The Caputo fractional derivative is used. The stresses corresponding to the fundamental solutions of a Cauchy problem for the fractional heat conduction equation are found in one-dimensional and two-dimensional cases.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/014957390523741</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0149-5739
ispartof Journal of thermal stresses, 2004-12, Vol.28 (1), p.83-102
issn 0149-5739
1521-074X
language eng
recordid cdi_informaworld_taylorfrancis_310_1080_014957390523741
source Taylor and Francis Science and Technology Collection
subjects fractional calculus
heat wave equation
non-Fourier heat conduction
thermal stresses
title FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRACTIONAL%20HEAT%20CONDUCTION%20EQUATION%20AND%20ASSOCIATED%20THERMAL%20STRESS&rft.jtitle=Journal%20of%20thermal%20stresses&rft.au=Povstenko,%20Y.%20Z.&rft.date=2004-12-15&rft.volume=28&rft.issue=1&rft.spage=83&rft.epage=102&rft.pages=83-102&rft.issn=0149-5739&rft.eissn=1521-074X&rft_id=info:doi/10.1080/014957390523741&rft_dat=%3Cproquest_infor%3E29252514%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-fea1d24b1f6ecf266a31e1dfc3e8ec2441b80b6f03d8a4712c52489090f1a88a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29252514&rft_id=info:pmid/&rfr_iscdi=true