Loading…
Importance Sampling for Backward SDEs
In this article, we explain how the importance sampling technique can be generalized from simulating expectations to computing the initial value of backward stochastic differential equations (SDEs) with Lipschitz continuous driver. By means of a measure transformation we introduce a variance reduced...
Saved in:
Published in: | Stochastic analysis and applications 2010-02, Vol.28 (2), p.226-253 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we explain how the importance sampling technique can be generalized from simulating expectations to computing the initial value of backward stochastic differential equations (SDEs) with Lipschitz continuous driver. By means of a measure transformation we introduce a variance reduced version of the forward approximation scheme by Bender and Denk [
4
] for simulating backward SDEs. A fully implementable algorithm using the least-squares Monte Carlo approach is developed and its convergence is proved. The success of the generalized importance sampling is illustrated by numerical examples in the context of Asian option pricing under different interest rates for borrowing and lending. |
---|---|
ISSN: | 0736-2994 1532-9356 |
DOI: | 10.1080/07362990903546405 |