Loading…

Surface roughness prediction in machining using soft computing

A study is presented to model surface roughness in end milling using adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithms (GAs). The machining parameters, namely, the spindle speed, feed rate, depth of cut and the workpiece-tool vibration amplitude have been used as inputs to model t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer integrated manufacturing 2009-03, Vol.22 (3), p.257-266
Main Author: Samanta, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A study is presented to model surface roughness in end milling using adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithms (GAs). The machining parameters, namely, the spindle speed, feed rate, depth of cut and the workpiece-tool vibration amplitude have been used as inputs to model the workpiece surface roughness. The number and the parameters of membership functions used in ANFIS along with the most suitable inputs are selected using GAs maximising the modelling accuracy. The ANFIS with GAs (GA-ANFIS) are trained with a subset of the experimental data. The trained GA-ANFIS are tested using the set of validation data. The procedure is illustrated using the experimental data of a CNC vertical machining centre in end-milling of 6061 aluminum. Results are compared with other soft computing techniques like genetic programming (GP) and artificial neural network (ANN). The results show the effectiveness of the proposed approach in modelling the surface roughness.
ISSN:0951-192X
1362-3052
DOI:10.1080/09511920802287138