Loading…
MODULES FOR WHICH EVERY SUBMODULE HAS A UNIQUE COCLOSURE
P. F. Smith studied modules in which every submodule has a unique closure and called them UC modules. In this paper we consider modules with the dual property viz., those in which every submodule has a unique coclosure and call such modules UCC modules. Unlike closures, a coclosure of a submodule of...
Saved in:
Published in: | Communications in algebra 2002-05, Vol.30 (5), p.2355-2377 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | P. F. Smith studied modules in which every submodule has a unique closure and called them UC modules. In this paper we consider modules with the dual property viz., those in which every submodule has a unique coclosure and call such modules UCC modules. Unlike closures, a coclosure of a submodule of a module may not always exist and even if it exists, it may not be unique. We investigate the conditions under which a module is a UCC module. We prove that UCC modules are closed under factor modules and coclosed submodules. We also investigate their properties and their relation to non-cosingular modules, copolyform modules, and codimension modules. We end this paper with the dual of Smith's result on dimension modules. |
---|---|
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1081/AGB-120003473 |