Loading…
Prime Divisibility Among Degrees of Solvable Groups
Let G be a finite, nonabelian, solvable group. Following work by D. Benjamin, we conjecture that some prime must divide at least a third of the irreducible character degrees of G. Benjamin was able to show the conjecture is true if all primes divide at most 3 degrees. We extend this result by showin...
Saved in:
Published in: | Communications in algebra 2004-12, Vol.32 (9), p.3391-3402 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G be a finite, nonabelian, solvable group. Following work by D. Benjamin, we conjecture that some prime must divide at least a third of the irreducible character degrees of G. Benjamin was able to show the conjecture is true if all primes divide at most 3 degrees. We extend this result by showing if primes divide at most 4 degrees, then G has at most 12 degrees. We also present an example showing our result is best possible. |
---|---|
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1081/AGB-120039553 |