Loading…

Teaching Bayesian Model Comparison With the Three-Sided Coin

This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several...

Full description

Saved in:
Bibliographic Details
Published in:The American statistician 2007-08, Vol.61 (3), p.239-244
Main Authors: Kuindersma, Scott R, Blais, Brian S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463
cites cdi_FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463
container_end_page 244
container_issue 3
container_start_page 239
container_title The American statistician
container_volume 61
creator Kuindersma, Scott R
Blais, Brian S
description This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several models are presented, each of which take into consideration different physical aspects of the problem and the relative effects on the edge landing probability. The Bayesian formulation of model comparison is then used to compare the models and their predictive agreement with data from hand-flipped cylinders of several sizes.
doi_str_mv 10.1198/000313007X222497
format article
fullrecord <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1198_000313007X222497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27643900</jstor_id><sourcerecordid>27643900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463</originalsourceid><addsrcrecordid>eNp1kMtLxDAQh4MouK7evQhF8FjNq0mDXnTxBYoHV_RW0jxslm6zJl1k_3uzdFUQPA3D95tvhgHgEMFThER5BiEkiEDI3zDGVPAtMEIF4TnmBG2D0RrniRe7YC_GWWohZ3gELqZGqsZ179mVXJnoZJc9em3abOLnCxlc9F326vom6xuTTZtgTP7stNGJu24f7FjZRnOwqWPwcnM9ndzlD0-395PLh1xRRvqckAJzJDSuTcFpjUqrLOEcSoaMoApKSyGqWTpJmVLbgtZaC8ooslyVPCnG4HjwLoL_WJrYVzO_DF1aWWFcUsZRUaYQHEIq-BiDsdUiuLkMqwrBav2i6u-L0sjJxiujkq0NslMu_s6VgiEhSModDblZ7H344ZgzSkSSjsH5wF1nfZjLTx9aXfVy1frwLSX_XvEF07N_rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228467158</pqid></control><display><type>article</type><title>Teaching Bayesian Model Comparison With the Three-Sided Coin</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Kuindersma, Scott R ; Blais, Brian S</creator><creatorcontrib>Kuindersma, Scott R ; Blais, Brian S</creatorcontrib><description>This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several models are presented, each of which take into consideration different physical aspects of the problem and the relative effects on the edge landing probability. The Bayesian formulation of model comparison is then used to compare the models and their predictive agreement with data from hand-flipped cylinders of several sizes.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1198/000313007X222497</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis</publisher><subject>Bayesian analysis ; Bayesian networks ; Center of mass ; Comparative analysis ; Cylinders ; Data models ; Energy value ; Exact sciences and technology ; General topics ; Log-likelihood ; Marginalization ; Mathematics ; Mathematics education ; Modeling ; Occam's razor ; Parameter estimation ; Parametric models ; Probabilities ; Probability ; Probability and statistics ; Probability theory ; Sciences and techniques of general use ; Statistical analysis ; Statistics ; Surface areas ; Teacher's Corner ; Teaching methods</subject><ispartof>The American statistician, 2007-08, Vol.61 (3), p.239-244</ispartof><rights>American Statistical Association 2007</rights><rights>Copyright 2007 American Statistical Association</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Statistical Association Aug 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463</citedby><cites>FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27643900$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27643900$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18961993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuindersma, Scott R</creatorcontrib><creatorcontrib>Blais, Brian S</creatorcontrib><title>Teaching Bayesian Model Comparison With the Three-Sided Coin</title><title>The American statistician</title><description>This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several models are presented, each of which take into consideration different physical aspects of the problem and the relative effects on the edge landing probability. The Bayesian formulation of model comparison is then used to compare the models and their predictive agreement with data from hand-flipped cylinders of several sizes.</description><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>Center of mass</subject><subject>Comparative analysis</subject><subject>Cylinders</subject><subject>Data models</subject><subject>Energy value</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Log-likelihood</subject><subject>Marginalization</subject><subject>Mathematics</subject><subject>Mathematics education</subject><subject>Modeling</subject><subject>Occam's razor</subject><subject>Parameter estimation</subject><subject>Parametric models</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Surface areas</subject><subject>Teacher's Corner</subject><subject>Teaching methods</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLxDAQh4MouK7evQhF8FjNq0mDXnTxBYoHV_RW0jxslm6zJl1k_3uzdFUQPA3D95tvhgHgEMFThER5BiEkiEDI3zDGVPAtMEIF4TnmBG2D0RrniRe7YC_GWWohZ3gELqZGqsZ179mVXJnoZJc9em3abOLnCxlc9F326vom6xuTTZtgTP7stNGJu24f7FjZRnOwqWPwcnM9ndzlD0-395PLh1xRRvqckAJzJDSuTcFpjUqrLOEcSoaMoApKSyGqWTpJmVLbgtZaC8ooslyVPCnG4HjwLoL_WJrYVzO_DF1aWWFcUsZRUaYQHEIq-BiDsdUiuLkMqwrBav2i6u-L0sjJxiujkq0NslMu_s6VgiEhSModDblZ7H344ZgzSkSSjsH5wF1nfZjLTx9aXfVy1frwLSX_XvEF07N_rQ</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Kuindersma, Scott R</creator><creator>Blais, Brian S</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070801</creationdate><title>Teaching Bayesian Model Comparison With the Three-Sided Coin</title><author>Kuindersma, Scott R ; Blais, Brian S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>Center of mass</topic><topic>Comparative analysis</topic><topic>Cylinders</topic><topic>Data models</topic><topic>Energy value</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Log-likelihood</topic><topic>Marginalization</topic><topic>Mathematics</topic><topic>Mathematics education</topic><topic>Modeling</topic><topic>Occam's razor</topic><topic>Parameter estimation</topic><topic>Parametric models</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Surface areas</topic><topic>Teacher's Corner</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuindersma, Scott R</creatorcontrib><creatorcontrib>Blais, Brian S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuindersma, Scott R</au><au>Blais, Brian S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teaching Bayesian Model Comparison With the Three-Sided Coin</atitle><jtitle>The American statistician</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>61</volume><issue>3</issue><spage>239</spage><epage>244</epage><pages>239-244</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several models are presented, each of which take into consideration different physical aspects of the problem and the relative effects on the edge landing probability. The Bayesian formulation of model comparison is then used to compare the models and their predictive agreement with data from hand-flipped cylinders of several sizes.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/000313007X222497</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 2007-08, Vol.61 (3), p.239-244
issn 0003-1305
1537-2731
language eng
recordid cdi_informaworld_taylorfrancis_310_1198_000313007X222497
source JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection
subjects Bayesian analysis
Bayesian networks
Center of mass
Comparative analysis
Cylinders
Data models
Energy value
Exact sciences and technology
General topics
Log-likelihood
Marginalization
Mathematics
Mathematics education
Modeling
Occam's razor
Parameter estimation
Parametric models
Probabilities
Probability
Probability and statistics
Probability theory
Sciences and techniques of general use
Statistical analysis
Statistics
Surface areas
Teacher's Corner
Teaching methods
title Teaching Bayesian Model Comparison With the Three-Sided Coin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T17%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20Bayesian%20Model%20Comparison%20With%20the%20Three-Sided%20Coin&rft.jtitle=The%20American%20statistician&rft.au=Kuindersma,%20Scott%20R&rft.date=2007-08-01&rft.volume=61&rft.issue=3&rft.spage=239&rft.epage=244&rft.pages=239-244&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1198/000313007X222497&rft_dat=%3Cjstor_infor%3E27643900%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=228467158&rft_id=info:pmid/&rft_jstor_id=27643900&rfr_iscdi=true