Loading…
Teaching Bayesian Model Comparison With the Three-Sided Coin
This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several...
Saved in:
Published in: | The American statistician 2007-08, Vol.61 (3), p.239-244 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463 |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463 |
container_end_page | 244 |
container_issue | 3 |
container_start_page | 239 |
container_title | The American statistician |
container_volume | 61 |
creator | Kuindersma, Scott R Blais, Brian S |
description | This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several models are presented, each of which take into consideration different physical aspects of the problem and the relative effects on the edge landing probability. The Bayesian formulation of model comparison is then used to compare the models and their predictive agreement with data from hand-flipped cylinders of several sizes. |
doi_str_mv | 10.1198/000313007X222497 |
format | article |
fullrecord | <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1198_000313007X222497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27643900</jstor_id><sourcerecordid>27643900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463</originalsourceid><addsrcrecordid>eNp1kMtLxDAQh4MouK7evQhF8FjNq0mDXnTxBYoHV_RW0jxslm6zJl1k_3uzdFUQPA3D95tvhgHgEMFThER5BiEkiEDI3zDGVPAtMEIF4TnmBG2D0RrniRe7YC_GWWohZ3gELqZGqsZ179mVXJnoZJc9em3abOLnCxlc9F326vom6xuTTZtgTP7stNGJu24f7FjZRnOwqWPwcnM9ndzlD0-395PLh1xRRvqckAJzJDSuTcFpjUqrLOEcSoaMoApKSyGqWTpJmVLbgtZaC8ooslyVPCnG4HjwLoL_WJrYVzO_DF1aWWFcUsZRUaYQHEIq-BiDsdUiuLkMqwrBav2i6u-L0sjJxiujkq0NslMu_s6VgiEhSModDblZ7H344ZgzSkSSjsH5wF1nfZjLTx9aXfVy1frwLSX_XvEF07N_rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228467158</pqid></control><display><type>article</type><title>Teaching Bayesian Model Comparison With the Three-Sided Coin</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Kuindersma, Scott R ; Blais, Brian S</creator><creatorcontrib>Kuindersma, Scott R ; Blais, Brian S</creatorcontrib><description>This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several models are presented, each of which take into consideration different physical aspects of the problem and the relative effects on the edge landing probability. The Bayesian formulation of model comparison is then used to compare the models and their predictive agreement with data from hand-flipped cylinders of several sizes.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1198/000313007X222497</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis</publisher><subject>Bayesian analysis ; Bayesian networks ; Center of mass ; Comparative analysis ; Cylinders ; Data models ; Energy value ; Exact sciences and technology ; General topics ; Log-likelihood ; Marginalization ; Mathematics ; Mathematics education ; Modeling ; Occam's razor ; Parameter estimation ; Parametric models ; Probabilities ; Probability ; Probability and statistics ; Probability theory ; Sciences and techniques of general use ; Statistical analysis ; Statistics ; Surface areas ; Teacher's Corner ; Teaching methods</subject><ispartof>The American statistician, 2007-08, Vol.61 (3), p.239-244</ispartof><rights>American Statistical Association 2007</rights><rights>Copyright 2007 American Statistical Association</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Statistical Association Aug 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463</citedby><cites>FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27643900$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27643900$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18961993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuindersma, Scott R</creatorcontrib><creatorcontrib>Blais, Brian S</creatorcontrib><title>Teaching Bayesian Model Comparison With the Three-Sided Coin</title><title>The American statistician</title><description>This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several models are presented, each of which take into consideration different physical aspects of the problem and the relative effects on the edge landing probability. The Bayesian formulation of model comparison is then used to compare the models and their predictive agreement with data from hand-flipped cylinders of several sizes.</description><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>Center of mass</subject><subject>Comparative analysis</subject><subject>Cylinders</subject><subject>Data models</subject><subject>Energy value</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Log-likelihood</subject><subject>Marginalization</subject><subject>Mathematics</subject><subject>Mathematics education</subject><subject>Modeling</subject><subject>Occam's razor</subject><subject>Parameter estimation</subject><subject>Parametric models</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Surface areas</subject><subject>Teacher's Corner</subject><subject>Teaching methods</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLxDAQh4MouK7evQhF8FjNq0mDXnTxBYoHV_RW0jxslm6zJl1k_3uzdFUQPA3D95tvhgHgEMFThER5BiEkiEDI3zDGVPAtMEIF4TnmBG2D0RrniRe7YC_GWWohZ3gELqZGqsZ179mVXJnoZJc9em3abOLnCxlc9F326vom6xuTTZtgTP7stNGJu24f7FjZRnOwqWPwcnM9ndzlD0-395PLh1xRRvqckAJzJDSuTcFpjUqrLOEcSoaMoApKSyGqWTpJmVLbgtZaC8ooslyVPCnG4HjwLoL_WJrYVzO_DF1aWWFcUsZRUaYQHEIq-BiDsdUiuLkMqwrBav2i6u-L0sjJxiujkq0NslMu_s6VgiEhSModDblZ7H344ZgzSkSSjsH5wF1nfZjLTx9aXfVy1frwLSX_XvEF07N_rQ</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Kuindersma, Scott R</creator><creator>Blais, Brian S</creator><general>Taylor & Francis</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070801</creationdate><title>Teaching Bayesian Model Comparison With the Three-Sided Coin</title><author>Kuindersma, Scott R ; Blais, Brian S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>Center of mass</topic><topic>Comparative analysis</topic><topic>Cylinders</topic><topic>Data models</topic><topic>Energy value</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Log-likelihood</topic><topic>Marginalization</topic><topic>Mathematics</topic><topic>Mathematics education</topic><topic>Modeling</topic><topic>Occam's razor</topic><topic>Parameter estimation</topic><topic>Parametric models</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Surface areas</topic><topic>Teacher's Corner</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuindersma, Scott R</creatorcontrib><creatorcontrib>Blais, Brian S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuindersma, Scott R</au><au>Blais, Brian S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teaching Bayesian Model Comparison With the Three-Sided Coin</atitle><jtitle>The American statistician</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>61</volume><issue>3</issue><spage>239</spage><epage>244</epage><pages>239-244</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>This article introduces the problem of determining the probability that a rotating and bouncing cylinder (i.e., flipped coin) will land and come to rest on its edge. We present this problem and analysis as a practical, nontrivial example to introduce the reader to Bayesian model comparison. Several models are presented, each of which take into consideration different physical aspects of the problem and the relative effects on the edge landing probability. The Bayesian formulation of model comparison is then used to compare the models and their predictive agreement with data from hand-flipped cylinders of several sizes.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis</pub><doi>10.1198/000313007X222497</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-1305 |
ispartof | The American statistician, 2007-08, Vol.61 (3), p.239-244 |
issn | 0003-1305 1537-2731 |
language | eng |
recordid | cdi_informaworld_taylorfrancis_310_1198_000313007X222497 |
source | JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection |
subjects | Bayesian analysis Bayesian networks Center of mass Comparative analysis Cylinders Data models Energy value Exact sciences and technology General topics Log-likelihood Marginalization Mathematics Mathematics education Modeling Occam's razor Parameter estimation Parametric models Probabilities Probability Probability and statistics Probability theory Sciences and techniques of general use Statistical analysis Statistics Surface areas Teacher's Corner Teaching methods |
title | Teaching Bayesian Model Comparison With the Three-Sided Coin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T17%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20Bayesian%20Model%20Comparison%20With%20the%20Three-Sided%20Coin&rft.jtitle=The%20American%20statistician&rft.au=Kuindersma,%20Scott%20R&rft.date=2007-08-01&rft.volume=61&rft.issue=3&rft.spage=239&rft.epage=244&rft.pages=239-244&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1198/000313007X222497&rft_dat=%3Cjstor_infor%3E27643900%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-3352719d2be574b18fcf3770a61e94c0af401b6000ce8df54bdd94641f7c87463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=228467158&rft_id=info:pmid/&rft_jstor_id=27643900&rfr_iscdi=true |