Loading…
A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation
Quantitative photoacoustic tomography (QPAT) offers the possibility of high-resolution molecular imaging by quantifying molecular concentrations in biological tissue. QPAT comprises two inverse problems: (1) the construction of a photoacoustic image from surface measurements of photoacoustic wave pu...
Saved in:
Published in: | Inverse problems 2013-07, Vol.29 (7), p.75006-19 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantitative photoacoustic tomography (QPAT) offers the possibility of high-resolution molecular imaging by quantifying molecular concentrations in biological tissue. QPAT comprises two inverse problems: (1) the construction of a photoacoustic image from surface measurements of photoacoustic wave pulses over time, and (2) the determination of the optical properties of the imaged region. The first is a well-studied area for which a number of solution methods are available, while the second is, in general, a nonlinear, ill-posed inverse problem. Model-based inversion techniques to solve (2) are usually based on the diffusion approximation to the radiative transfer equation (RTE) and typically assume the acoustic inversion step has been solved exactly. Here, neither simplification is made: the full RTE is used to model the light propagation, and the acoustic propagation and image reconstruction are included in the simulations of measured data. Since Hessian- and Jacobian-based minimizations are computationally expensive for the large data sets typically encountered in QPAT, gradient-based minimization schemes provide a practical alternative. The acoustic pressure time series were simulated using a k-space, pseudo-spectral time domain model, and a time-reversal reconstruction algorithm was used to form a set of photoacoustic images corresponding to four illumination positions. A regularized, adjoint-assisted gradient inversion using a finite element model of the RTE was then used to determine the optical absorption and scattering coefficients. |
---|---|
ISSN: | 0266-5611 1361-6420 |
DOI: | 10.1088/0266-5611/29/7/075006 |