Loading…
Abrupt bifurcations in chaotic scattering: view from the anti-integrable limitDedicated to the memory of Leonid Pavlovich Shilnikov
Bleher, Ott and Grebogi found numerically an interesting chaotic phenomenon in 1989 for the scattering of a particle in a plane from a potential field with several peaks of equal height. They claimed that when the energy E of the particle is slightly less than the peak height Ec there is a hyperboli...
Saved in:
Published in: | Nonlinearity 2013-08, Vol.26 (9), p.2703-2730 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bleher, Ott and Grebogi found numerically an interesting chaotic phenomenon in 1989 for the scattering of a particle in a plane from a potential field with several peaks of equal height. They claimed that when the energy E of the particle is slightly less than the peak height Ec there is a hyperbolic suspension of a topological Markov chain from which chaotic scattering occurs, whereas for E > Ec there are no bounded orbits. They called the bifurcation at E = Ec an abrupt bifurcation to chaotic scattering. The aim of this paper is to establish a rigorous mathematical explanation for how chaotic orbits occur via the bifurcation, from the viewpoint of the anti-integrable limit, and to do so for a general range of chaotic scattering problems. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/0951-7715/26/9/2703 |