Loading…
The Unruh effect for higher derivative field theory
We analyse the emergence of the Unruh effect within the context of a field Lagrangian theory associated with the Pais-Uhlenbeck fourth order oscillator model. To this end, we introduce a transformation that brings the Hamiltonian bounded from below and is consistent with PT-symmetric quantum mechani...
Saved in:
Published in: | Classical and quantum gravity 2017-04, Vol.34 (7), p.75007 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyse the emergence of the Unruh effect within the context of a field Lagrangian theory associated with the Pais-Uhlenbeck fourth order oscillator model. To this end, we introduce a transformation that brings the Hamiltonian bounded from below and is consistent with PT-symmetric quantum mechanics. We find that, as far as we consider different frequencies within the Pais-Uhlenbeck model, a particle together with an antiparticle of different masses are created and may be traced back to the Bogoliubov transformation associated with the interaction between the Unruh-DeWitt detector and the higher derivative scalar field. In contrast, whenever we consider the equal frequencies limit, no particle creation is detected as the pair particle/antiparticle annihilate each other. Further, following Moschella and Schaeffer, we construct a Poincaré invariant two-point function for the Pais-Uhlenbeck model, which in turn allows us to perform the thermal analysis for any of the emanant particles. |
---|---|
ISSN: | 0264-9381 1361-6382 |
DOI: | 10.1088/1361-6382/aa601f |