Loading…

Covariant Galilean versus Carrollian hydrodynamics from relativistic fluids

We provide the set of equations for non-relativistic fluid dynamics on arbitrary, possibly time-dependent spaces, in general coordinates. These equations are fully covariant under either local Galilean or local Carrollian transformations, and are obtained from standard relativistic hydrodynamics in...

Full description

Saved in:
Bibliographic Details
Published in:Classical and quantum gravity 2018-08, Vol.35 (16), p.165001
Main Authors: Ciambelli, Luca, Marteau, Charles, Petkou, Anastasios C, Petropoulos, P Marios, Siampos, Konstantinos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We provide the set of equations for non-relativistic fluid dynamics on arbitrary, possibly time-dependent spaces, in general coordinates. These equations are fully covariant under either local Galilean or local Carrollian transformations, and are obtained from standard relativistic hydrodynamics in the limit of infinite or vanishing velocity of light. All dissipative phenomena such as friction and heat conduction are included in our description. Part of our work consists in designing the appropriate coordinate frames for relativistic spacetimes, invariant under Galilean or Carrollian diffeomorphisms. The guide for the former is the dynamics of relativistic point particles, and leads to the Zermelo frame. For the latter, the relevant objects are relativistic instantonic space-filling branes in Randers-Papapetrou backgrounds. We apply our results for obtaining the general first-derivative-order Galilean fluid equations, in particular for incompressible fluids (Navier-Stokes equations) and further illustrate our findings with two applications: Galilean fluids in rotating frames or inflating surfaces and Carrollian conformal fluids on two-dimensional time-dependent geometries. The first is useful in atmospheric physics, while the dynamics emerging in the second is governed by the Robinson-Trautman equation, describing a Calabi flow on the surface, and known to appear when solving Einstein's equations for algebraically special Ricci-flat or Einstein spacetimes.
ISSN:0264-9381
1361-6382
DOI:10.1088/1361-6382/aacf1a