Loading…

Regularization of inverse problems via time discrete geodesics in image spaces

This paper addresses the solution of inverse problems in imaging given an additional reference image. We combine a modification of the discrete geodesic path model for image metamorphosis with a variational model, actually the L2- model, for image reconstruction. We prove that the space continuous m...

Full description

Saved in:
Bibliographic Details
Published in:Inverse problems 2019-05, Vol.35 (5), p.55005
Main Authors: Neumayer, Sebastian, Persch, Johannes, Steidl, Gabriele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses the solution of inverse problems in imaging given an additional reference image. We combine a modification of the discrete geodesic path model for image metamorphosis with a variational model, actually the L2- model, for image reconstruction. We prove that the space continuous model has a minimizer which depends in a stable way from the input data. Two minimization procedures which alternate over the involved sequences of deformations and images in different ways are proposed. The updates with respect to the image sequence exploit recent algorithms from convex analysis to minimize the L2- functional. For the numerical computation we apply a finite difference approach on staggered grids together with a multilevel strategy. We present proof-of-the-concept numerical results for sparse and limited angle computerized tomography as well as for superresolution demonstrating the power of the method.
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ab038a