Loading…

A new class of accelerated regularization methods, with application to bioluminescence tomography

In this paper we propose a new class of iterative regularization methods for solving ill-posed linear operator equations. The prototype of these iterative regularization methods is in the form of second order evolution equation with a linear vanishing damping term, which can be viewed not only as an...

Full description

Saved in:
Bibliographic Details
Published in:Inverse problems 2020-05, Vol.36 (5), p.55013
Main Authors: Gong, Rongfang, Hofmann, Bernd, Zhang, Ye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we propose a new class of iterative regularization methods for solving ill-posed linear operator equations. The prototype of these iterative regularization methods is in the form of second order evolution equation with a linear vanishing damping term, which can be viewed not only as an extension of the asymptotical regularization, but also as a continuous analog of the Nesterov's acceleration scheme. New iterative regularization methods are derived from this continuous model in combination with appropriate numerical discretization schemes such as damped symplectic methods. The regularization property as well as convergence rates and acceleration effects under the Hölder-type source conditions of both continuous and discretized methods are proven. The second part of this paper is concerned with the application of the newly developed accelerated iterative regularization methods to the diffusion-based bioluminescence tomography, which is modeled as an inverse source problem in elliptic partial differential equations with both Dirichlet and Neumann boundary data. A novel mathematical formulation is proposed so that the discrepancy principle can be applied to stop the iteration procedure without the usage of Sobolev embedding constants. Several numerical examples, as well as acomparison with the state-of-the-art methods, are given to show the accuracy and the acceleration effect of the new methods.
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ab730b