Loading…
Optical detection of low frequency NQR signals: a step forward from conventional NQR
In searching for the more sensitive 14N nuclear quadrupole resonance (NQR) detecting system for illicit substances, a promising combination of a classic RF pulse NQR spectrometer and a K optically pumped magnetometer was tested. The initial results are encouraging. The principles of such a combinati...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2017-03, Vol.50 (9), p.95601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In searching for the more sensitive 14N nuclear quadrupole resonance (NQR) detecting system for illicit substances, a promising combination of a classic RF pulse NQR spectrometer and a K optically pumped magnetometer was tested. The initial results are encouraging. The principles of such a combination are described, and the detection limits in the low frequency RF region, where the 14N pulse NQR frequencies are usually positioned, are presented. Several illicit substances which are difficult to detect with a classic pulse NQR spectrometer were detected with both types of spectrometers. We noticed that with the proposed combination of classic RF excitation of 14N nuclei, using a pulse NQR spectrometer and subsequent optical detection of the sample's response, a gain in S/N of up to a factor of 10 was possible. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/aa4f23 |