Loading…
Porous tungsten nanostructure formation using a helium arc discharge plasma under sub-atmospheric pressure
Porous tungsten (W) nanostructure formation was performed for the first time using a helium (He) arc discharge plasma under sub-atmospheric pressure of 80 kPa. Scanning electron microscope observations showed that micron-sized bubble and hole structures were formed in the W substrate at a surface te...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2019-07, Vol.52 (37), p.375201 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Porous tungsten (W) nanostructure formation was performed for the first time using a helium (He) arc discharge plasma under sub-atmospheric pressure of 80 kPa. Scanning electron microscope observations showed that micron-sized bubble and hole structures were formed in the W substrate at a surface temperature of 1700 °C, indicating He penetration into the W substrate. At the surface temperature of 800 °C, surface blackening of the W substrate due to the He plasma irradiation for two hours was found. The unique surface morphology has a W nanofiber network with a thickness of ~10 µm which consists of assembly of W nanoparticles with a diameter of 20-30 nm. It was suggested that an interaction between W vapor evaporated from the W electrodes and the surrounding He plasma plays a key role for physical processes of the nanostructured W formation identified in this study. It could be formed due to a process of cluster-cluster aggregation of W nanoparticles produced by nucleation and condensation from the W vapor phase. The W nanoparticle network deposition is considered to be a new process for the porous W nanostructure formation as an alternative to standard fuzz formation associated by bubble formation on the surface of base W substrate. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/ab2ac1 |