Loading…

Thermal echo in a finite one-dimensional harmonic crystal

An instant homogeneous thermal perturbation in the finite harmonic one-dimensional crystal is studied. Previously it was shown that for the same problem in the infinite crystal the kinetic temperature oscillates with decreasing amplitude described by the Bessel function of the first kind. In the pre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2019-03, Vol.31 (9), p.95702-095702
Main Authors: Murachev, A S, Krivtsov, A M, Tsvetkov, D V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An instant homogeneous thermal perturbation in the finite harmonic one-dimensional crystal is studied. Previously it was shown that for the same problem in the infinite crystal the kinetic temperature oscillates with decreasing amplitude described by the Bessel function of the first kind. In the present paper it is shown that in the finite crystal this behavior is observed only until a certain period of time when a sharp increase of the oscillation amplitude is realized. This phenomenon, further referred to as the thermal echo, occurs periodically, with the period proportional to the crystal length. The amplitude for each subsequent echo is lower than for the previous one. It is obtained analytically that the time-dependence of the kinetic temperature can be described by an infinite sum of the Bessel functions with multiple indices. It is also shown that the thermal echo in the thermodynamic limit is described by the Airy function.
ISSN:0953-8984
1361-648X
DOI:10.1088/1361-648X/aaf3c6